Blunt Aortic Trauma: A Radiologic Diagnosis

Medell K. Briggs, HMS IV
Gillian Lieberman, MD
Harvard Medical School
You are a 1st year Radiology resident...
Patient KS: History

- 23 yo male involved in high speed MVA
- KS’s motorcycle collided with truck and KS was thrown from vehicle
- EMS found KS alert, but hemodynamically unstable at scene
Patient KS: Physical Exam

- Vitals: Temp 97.8 Pulse 110s BP 190/60
- HEENT-PERRRL, TMs clear
- CV-RRR, Norm S1 and S2
- Lungs- CTAB with equal breath sounds
- Abd- Soft, ND, NT with no palpable pulsatile masses
- Ext- Numerous upper and lower extremity injuries with lack of palpable left dorsalis pedis pulse
Patient KS: Portable CXR
You immediately …

• Call the CT techs to ensure a chest CT with contrast is being obtained
• Page the ER resident to alert her of your findings
• **What is your primary concern?**

• **Why is a Chest CT with contrast so imperative?**

• **Are any additional studies necessary?**
Thoracic Aorta Anatomy

- Ascending aorta relatively unfixed and mobile
- Descending aorta fixed and immobile due to intercostal arteries and ligamentum arteriosum

Image: Gray’s Anatomy
Blunt Aortic Injury

- Aorta is most common vessel injured by blunt trauma of chest

- Due to rapid deceleration events
 - High speed MVA
 - Fall from significant heights
Blunt Aortic Injury

- Blunt chest trauma is the most common cause of acute tear through the aortic wall

- An acute, traumatic tear extending through the intima, media, and adventitia is termed:
 - *aortic transection*, *aortic rupture*, *aortic disruption*
 - Tears can involve one or more layers
Blunt Aortic Injury

- Incomplete aortic transections tend to form pseudoaneurysms
 - Evolve from spared adventitia
 - Increased hemodynamic stability due to maintenance of blood flow
 - Still emergency due to possible rupture --> death
Aortic Transection: Epidemiology

• Results in immediate death in 80-90% of cases (Marx: Rosen’s Emergency Medicine, 2002)
 – Due to complete transection and rapid exsanguination at accident site

• Scene survivors also have high rate of mortality
 – Hemodynamically unstable: mortality rate <90%
 – Hemodynamically stable: mortality rate as low as 25% (Gotway, Thoracic Aorta Imaging with Multislice CT, 2003)
 • Due to pseudoaneurysm formation, rapid diagnosis, and surgical intervention
Aortic Transection: Sites of Injury

- Aortic isthmus: 80-90%
- Ascending aorta: 5-10%
- Descending Aorta near diaphragmatic hiatus: 1-3%

(Marx: Rosen’s Emergency Medicine, 2002)
Aortic Transection: Mechanism of Injury

- Aortic Isthmus Injury - sudden deceleration causes mobile aortic arch to swing forward resulting in:
 1. Whiplash Effect: shearing force at isthmus
 2. Bending stress at isthmus: due to flexion of arch on left mainstem bronchus and pulmonary artery
 3. Osseous Pinch: inferior & posterior rotation of anterior chest wall structures (manubrium, 1st rib) cause pinching and shearing of isthmus as it strikes the vertebral column

- Ascending Aorta Injury
 1. Waterhammer Effect: aortic compression results in explosive rupture of ascending aorta due to increased intraaortic pressure
 2. Shearing stress: heart displacement into left posterior chest causing tear above aortic valve
Aortic Transection: Clinical Features

• Symptoms (Uncommon and nonspecific)
 – Interscapular or retrosternal pain
 • 25% of patients (Marx: Rosen’s Emergency Medicine, 2002)
 – Dyspnea, hoarseness, dysphagia

• Physical Exam (rarely signs of chest trauma)
 – Generalized hypertension
 • Secondary to aortic isthmus sympathetic afferent nerves causing reflex htn due to stretch stimulus
 – Pseudocoarctation
 • Compression of aortic lumen by periaortic hematoma
 – Often no clinical signs of chest trauma
Aortic Transection: Diagnostic Imaging Modalities

- CXR
- CT
- Angiography
- Transesophageal echocardiogram
Patient KS: CXR

- **Sensitive Indicators:**
 - Widened mediastinum
 - Indistinct aortic knob
- **Less Sensitive Indicators:**
 - Displaced trachea
 - Widened R paratracheal stripe
 - Widened paraspinal line
- **Not So Sensitive Indicators:**
 - Depression of left main bronchus
 - Left hemothorax/effusion
 - Left apical pleural cap
Diagnostic Imaging: CXR

- **Widened Mediastinum**
 - Defined as >8cm on supine AP CXR
 - Sensitivity 81-100%
 - Specificity 60%
 - Numerous differentials: achalasia, hematoma/hemorrhage, lymphadenopathy, neoplasm (Reed, Gamuts of Radiology, 2003)
 - Normal CXR has NPV of 98% (Rivas, L, Multislice CT in Thoracic Trauma, 2003)
Diagnostic Imaging: CT

- Conventional CT failed at diagnosing aortic injury
- Helical and new multislice CT have proven great success in diagnosis
- Able to assess polytraumatized patient
- Uses nonionic contrast
- Reformations similar to angiographic projections
- Sensitivity 100%
- Specificity 96%

(Rivas, L, Multislice CT in Thoracic Trauma, 2003)
Patient KS: CT

- **Direct Signs**
 - Pseudoaneurysm
 - Intimal flap
 - Abnormal aortic contour
 - Active contrast extravasation
 - Abrupt changes in aortic caliber

- **Indirect Signs**
 - Mediastinal hematoma
 - Periaortic hematoma
Patient KS: CT

- Direct Signs
 - Pseudoaneurysm
 - Intimal flap
 - Abnormal aortic contour
 - Active contrast extravasation
 - Abrupt changes in aortic caliber

- Indirect Signs
 - Mediastinal hematoma
 - Periaortic hematoma
Patient KS: CT

- Direct Signs
 - Pseudoaneurysm
 - Intimal flap
 - Abnormal aortic contour
 - Active contrast extravasation
 - Abrupt changes in aortic caliber

- Indirect Signs
 - Mediastinal hematoma
 - Periaortic hematoma
Patient KS: CT

- Reformations
 - Give full visualization of ascending and descending aorta
 - Can be reformatted in oblique, sagittal, or coronal views for better localization and visualization
Diagnostic Imaging: CT

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- High sensitivity & specificity</td>
<td>- Pulsation artifacts</td>
</tr>
<tr>
<td>- Non-invasive</td>
<td>- IV contrast</td>
</tr>
<tr>
<td>- Provides info on other injuries</td>
<td></td>
</tr>
<tr>
<td>- Rapid and easily accessible</td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic Imaging: Angiography

- Traditional imaging modality for aortic transections
- Enables intricate visualization of aorta and provides precise localization of aortic defects
- Sensitivity 100%
- Specificity 97%
 (Marx: Rosen’s Emergency Medicine, 2002)
- 1-10% procedure complication rate
 (Mechem, ICU Management of Trauma Patients, 2004)
- Thoracic aortograms quickly being phased out by multislice CT
 - No longer performed at BIDMC!

Diagnostic Imaging: Angiography

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>- High sensitivity & specificity</td>
<td>- Highly invasive</td>
</tr>
<tr>
<td>- Precise localization of defect</td>
<td>- Time consuming</td>
</tr>
<tr>
<td></td>
<td>- IV contrast</td>
</tr>
<tr>
<td></td>
<td>- Must be aware of “fake outs” (i.e. ductus diverticulum)</td>
</tr>
</tbody>
</table>
Diagnostic Imaging: TEE

- Transesophageal echocardiogram (TEE) provides accurate identification of:
 - Intimal flap
 - Periaortic hematoma
- Sensitivity 91-100%
- Specificity 98-100%

(Vignon, P, TEE in Traumatic Rupture of Aortic Isthmus, 2004.)
Diagnostic Imaging: TEE

Transverse View at Aortic Isthmus
- *Large arrow*- thick “medial flap”
- *Arrow heads*- localized deformity of aortic wall due to pseudoaneurysm

Color Doppler at Aortic Isthmus
- *Large arrow*- thick “medial flap”
- Similar blood flow velocities on both sides of flap
- Color mosaic is turbulent flow at site of disruption

Diagnostic Imaging: TEE

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Extremely fast</td>
<td>- Ascending and descending aorta blind spots</td>
</tr>
<tr>
<td>- Can be performed at bedside</td>
<td>- Operator and reader DE-pendent</td>
</tr>
<tr>
<td>- No IV contrast</td>
<td></td>
</tr>
<tr>
<td>- Simultaneous eval of cardiac fxn</td>
<td></td>
</tr>
</tbody>
</table>
Patient KS: Summary

- **What was your primary concern?**
 - Aortic Transection!
 - Critical injury to radiologically diagnose due to high mortality rate

- **Why was a Chest CT with contrast so imperative?**
 - CXR findings and clinical history of high speed MVA increased suspicion of a possible aortic transection
 - To date, multislice CT with contrast is the preferred modality in a trauma situation due to:
 - High diagnostic capabilities, rapid assessment, and concomitant evaluation of additional traumatic injuries

- **Were any additional studies necessary?**
 - No. Angiography and TEE are best used as confirmatory studies or primary diagnostic modalities in extremely stable patients
 - Numerous factors (i.e. time, invasiveness, expertise needed) limit use in emergent situations
References

Acknowledgements

• Alice Fisher, MD
• Vassilios Raptopoulos, MD
• Phillip Boiselle, MD
• Pamela Lepkowski, Program Coordinator
• Gillian Lieberman, MD
• Larry Barbaras, Webmaster