Agenda

• Index Patient Introduction
• Disease Classification
• Disease Descriptions
• Imaging Workup
• Treatment Options
• Interventional Management
Index Patient: Baby B.G.

• History
 • 2 mo M with left neck mass first seen prenatally at 37wk U/S. Pt born via c/s at 39wk, otherwise unremarkable birth. Lesion has not changed size since birth. No problems with growth, airway, feeding.

• Physical Exam
 • AVSS, boggy, 5x6cm left neck mass, no overlying rash, warmth, or bruit.

• Brief Differential Diagnosis
 • Vascular anomaly – most likely
 • Infection - smaller, transient, usually after birth
 • Solid tumor - (benign/malignant) – usually firm, midline
 • Branchial cleft cyst - later age, firm, smaller
 • Thyroglossal duct cyst - later age, central location
ISSVA Classification

- ISSVA - Int’l. Society for the Study of Vascular Anomalies
 - Drs. Mulliken & Glowacki - Children’s Hospital Boston
- Biologic Classification – differing course & treatments

 Tumor vs Malformation

 - “oma” = proliferation
 - ↑ EC turnover / hyperplasia, thick BM
 - ↑ Surface markers - VEGF, bFGF, (PCNA)
 - Usually infancy/childhood
 - Naturally involuting
 - >3:1 female:male

 - abnormal morphogenesis
 - Normal EC, BM, pathology
 - Minimal surface marker expression
 - Present at birth
 - Naturally persistent
 - 1:1 female:male
Classes of Congenital Vascular Anomalies

- **Tumors**
 - **Hemangiomas**
 - Infantile
 - Congenital
 - **Tufted Hemangioma**
 - **Hemangioendothelioma**
 - **Acquired dermatologic**
 - **Other syndromes**

- **Malformations**
 - **Capillary**
 - Dermatologic
 - Superficial laser tx
 - **Lymphatic**
 - Microcystic
 - Macrocystic
 - **Venous**
 - **Arterial / Arteriovenous**
 - **Combined Forms / Syndromes**
Hemangioma

- Benign endothelial cell tumor
 - Tightly packed mass of vascular channels’
 - 2 main types
- 1. **Infantile Hemangioma**
 - Usually has overlying patch of redness (superficial)
 - Most common tumor of infancy/childhood
 - 4-10% prevalence in Caucasian infants
 - 3-5:1 females:males
 - Appears weeks/months after birth
 - Natural course - 3 stages
 - 1. Proliferating - first year
 - 2. Involuting - few years
 - 3. Involuted - most resolved by age 10

Children’s Hospital Boston
Hemangioma (cont.)

2. **Congenital Hemangioma**
 - Blue/gray hue w/ pale halo (skin)
 - Rare (compared to infantile)
 - Present at birth
 - 2 types
 - 1. Non-Involuting (NICH) - persistent
 - 2. Rapidly Involuting (RICH) - resolved by 1-2 yrs

Complications
- Ulceration, bleeding, infection, obstruction/displacement of organs, high-output cardiac failure due to high flow/shunting

There are NO new-onset adult hemangiomas
Lymphatic Malformation (LM)

- Collection of lymph-filled channels/cysts
- Present at birth (5-6 wks G.A.)
- ↑ Swelling w/ infections
- Soft w/ no overlying rash
- Most common:
 - 1. head/neck
 - 2. extremities/axilla
 - 3. trunk
- 2 Types
 - 1. Microcystic: multiple small vesicles
 - 2. Macrocystic: few large septated cysts
- Complications: infection, bleeding, obstruction/displacement of organs, overgrowth of involved tissue
- A.K.A. - “cystic hygroma”, “lymphangioma”

Children’s Hospital Boston
http://www.childrenshospital.org/az/Site1256/mainpageS1256P0.html
Venous Malformation (VM)

- Thin-walled, dilated veins
 - Inadequate smooth muscle layer
- Present at birth
 - Often unseen until symptomatic in childhood
- Soft w/ bluish skin hue
- Waxing/waning size and symptoms
 - VM growth proportional to child’s growth
 - Possible association with trauma, hormones
- Complications
 - Thrombosis, bleeding
- A.K.A. - “cavernous hemangioma”

Children’s Hospital Boston
http://www.childrenshospital.org/az/Site1830/mainpageS1830P0.html

Companion Patients #2 and #3
Arterio-Venous Malformation (AVM)

- High-flow arterio-venous communication - absence of developed capillary bed
- Present at birth
- Reddish vascular hue (skin), often warm
- Complications
 - Bleeding, compression / displacement of organs, high-output cardiac failure
- Seen in hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu)

http://www.childrenshospital.org/az/Site593/mainpageS593P0.html
Baby B.G. - Focused DDx

- **Review**: soft left neck mass since birth, no change in size, no warmth/redness

- **Narrowed Differential Diagnosis?**
 - Vascular anomaly
 - Hemangioma?
 - Infantile? - No - present since birth
 - Congenital? – Possible – too soon to distinguish NICH vs RICH
 - Lymphatic? – Possible
 - Venous? - Less likely but possible - no growth but only 2 months old, no bluish hue but not always present
 - Arterial / AV? - Less likely - no warmth/redness
With a focused differential diagnosis based on history and physical, we proceed to radiologic imaging to further characterize our patient’s vascular malformation.
Imaging Options for Vascular Malformations

- **Ultrasound**
 - Assess flow pattern
- **MRI**
 - Critical, often definitive
- **Radiographs**
 - Limited benefit - bony structures, calcification
 - Quick and Cheap
- **Angiography**
Imaging Workup Decision Tree

Ultrasound

MRI

High flow

Mass-like

Hemangioma

No mass

AVM

Low flow

Diffuse enhancement with contrast

Venous

No/rim enhancement with contrast

Lymphatic
Ultrasound Reference Images

- **High Flow Lesions**
 - Hemangioma
 - Arterio-venous Malformation

- **Low Flow Lesions**
 - Lymphatic Malformation
 - Venous Malformation
<table>
<thead>
<tr>
<th></th>
<th>Hemangioma</th>
<th>AVM</th>
<th>Lymphatic</th>
<th>Venous</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Isointense</td>
<td>Isointense</td>
<td>Hypointense</td>
<td>Hypo/isointense</td>
</tr>
<tr>
<td>T2</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
</tr>
<tr>
<td>Post-contrast</td>
<td>Intense enhancement</td>
<td>Intense enhancement</td>
<td>No / Rim enhancement</td>
<td>Diffuse enhancement</td>
</tr>
</tbody>
</table>
MRI Images - High Flow Lesions

- **Hemangioma**
 - Protruding mass (*)

- **Arterio-Venous Malformation**
 - No mass
 - Flow voids – high-speed flow

<table>
<thead>
<tr>
<th></th>
<th>Hemangioma</th>
<th>AVM</th>
<th>Lymphatic</th>
<th>Venous</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Isointense</td>
<td>Isointense</td>
<td>Hypointense</td>
<td>Hypo/isointense</td>
</tr>
<tr>
<td>T2</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
</tr>
<tr>
<td>Post-contrast</td>
<td>Intense enhancement</td>
<td>Intense enhancement</td>
<td>No / Rim enhancement</td>
<td>Diffuse enhancement</td>
</tr>
</tbody>
</table>

MRI Images - Low Flow Lesions

- **Venous Malformation**
 - Diffuse enhancement w/ contrast

- **Lymphatic Malformation**
 - Septal (Left) / Rim (Rt) enhancement

<table>
<thead>
<tr>
<th></th>
<th>Hemangioma</th>
<th>AVM</th>
<th>Lymphatic</th>
<th>Venous</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Isointense</td>
<td>Isointense</td>
<td>Hypointense</td>
<td>Hypo/isointense</td>
</tr>
<tr>
<td>T2</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
</tr>
<tr>
<td>Post-contrast</td>
<td>Intense enhancement</td>
<td>Intense enhancement</td>
<td>No / Rim enhancement</td>
<td>Diffuse enhancement</td>
</tr>
</tbody>
</table>
Radiographic / (CT) Findings

- Generally of limited use
- Phleboliths seen w/ X-ray
 - Calcifications
 - Post venous thrombus
 - Suggest Venous malformations

Left upper extremity

Angiography

- Performed to characterize AVM architecture
- Encouraged prior to any injected therapy
- No longer necessary for diagnosis of venous malformation
Baby B.G.’s Radiologic Studies and Diagnosis

Macrocystic Lymphatic Malformation

- No phlebolith
- Low flow
- Large cysts
- T1 hypointense
- Final Diagnosis?

Axial MRI L Neck, T1 (contrast study not performed at outside referring hospital)

Axial MRI L Neck, T2

Ultrasound L Neck

Ultrasound w/ Doppler
Further Workup Options

- Biopsy
 - Pathology / Microbiology
- Aspirate of lesion
 - Blood vs Lymph
 - Pathology / Microbiology
- Molecular Markers
 - Of lesion sample
 - Of patient’s serum/urine
Treatment Options

- Observation
- Dermatologic
 - Laser therapy – capillary malformation
- Pharmacologic
 - Hemangioma – steroids, IFN-α, vincristine
- Surgical (excision)
- Interventional Radiology (IR): minimally invasive
 - **Sclerotherapy** - LM & VM (low-flow lesions)
 - Embolization - AVM
Sclerotherapy Overview

- Primary IR treatment for VM/LM
- Intralesional injection of irritant/sclerosant
 - U/S & fluoroscopically guided
 - Induces fibrosis, contraction over 4-8 weeks
- Sclerosants
 - Doxycycline: sufficient for LM
 - Bleomycin: experimental for microcystic LM
 - Theoretical concern for systemic effects – pulmonary fibrosis
 - Sodium Tetradecyl Sulfate (STS): detergent for VM/LM
 - OK-432: experimental, lyophilized S. pyogenes cells
 - EtOH: avoided in children
Sclerotherapy Setup

Dr. Konez, http://www.birthmarks.us/sclerotherapy.htm
U/S Pre & Post VM Sclerotherapy

U/S Normal Muscle
Fascicular horizontal lines noted

U/S Pre STS
Venous channels circled, fibrotic (grainy echogenicity) muscle surrounding

4-6wks Post Sclero
Reduced channel size, sclerotic/fibrotic muscle surrounding

PACS, CHB, courtesy Dr. C. Johnson
Baby B.G. Sclerotherapy: Left Neck Ultrasound

Lymphatic Macrocyt (Fluid = black)

Injection Doxycycline after fluid aspiration

U/S guided needle insertion

Post injection

PACS, CHB, courtesy Dr. Padua
Baby B.G. Sclerotherapy: Fluoroscopy

Fluoroscopy – Doxycycline injection of cyst

Post injection with contrast/sclerosant filled cyst
Representative images of neck lymphatic malformation pre and 2 years post sclerotherapy with doxycycline
Pre & Post Sclerotherapy for VM

Companion Patient #5

Children’s Hospital Boston
http://www.childrenshospital.org/az/Site1830/mainpageS1830P0.html
Summary

- **Classification**: Tumor vs Malformation
- **Imaging Workup**
 - 1. Ultrasound - High vs Low Flow
 - 2. MRI - T2/T1, contrast enhancing (blood), flow voids (high flow)

<table>
<thead>
<tr>
<th></th>
<th>Hemangioma</th>
<th>AVM</th>
<th>Lymphatic</th>
<th>Venous</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Isointense</td>
<td>Isointense</td>
<td>Hypointense</td>
<td>Hypo/isointense</td>
</tr>
<tr>
<td>T2</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
<td>Hyperintense</td>
</tr>
<tr>
<td>Post-contrast</td>
<td>Intense enhancement</td>
<td>Intense enhancement</td>
<td>No / Rim enhancement</td>
<td>Diffuse enhancement</td>
</tr>
</tbody>
</table>

- **Treatment**: Pharmacologic, Surgical, Interventional
 - Hemangioma - Steroids
 - Lymphatic Malformation - Surgery / Sclerotherapy (Doxycycline)
 - Venous Malformation - Surgery / Sclerotherapy (STS)
 - Arterial - Embolization
Acknowledgements

- Dr. Craig Johnson – CHB IR
- Dr. Meguru Watanabe – CHB IR
- Dr. Horacio Padua – CHB IR
- Dr. Gulraiz Chaudry – CHB IR
- Dr. Ahmad Alomari – CHB IR
- Dr. Steven Fishman – CHB Surgery

- Dr. Diana Rodriguez – CHB Radiology
- Dr. Gillian Lieberman – BIDMC Radiology
- Maria Levantakis – BIDMC Radiology
References

Thank You

Questions?
Contact qudsi@post.harvard.edu