Current Trends in the Imaging of Diffuse Axonal Injury

Edwin Chu, MS IV
University of Texas Medical School in San Antonio
Gillian Lieberman, MD
Harvard Medical School
Beth Israel Deaconess Medical Center
Introduction to Traumatic Brain Injury (TBI)

- Defined as damage to the brain from an external mechanical force.
- Examples of such forces include rapid acceleration or deceleration motions, impact injuries, or penetration by a projectile
- Incidence: 200-225/100,000
- 12% of all U.S. hospital admissions are TBI-related

Our Patient: MC

- CC: Traumatic Brain Injury

HPI: 23 y/o M with unknown medical history transferred from an outside hospital s/p high speed (~100mph) motorcycle vs. bus accident. Pt was helmeted. In the field, GCS 3. Negative tox screen.

GCS- Glasgow Coma Score

Edwin Chu, MS IV
Gillian Lieberman, MD
On Admission- Patient MC: CT Imaging

Axial non contrast CT imaging showing hyperdensity (green box) in left frontal lobe consistent with a hemorrhagic contusion. No other signs of hemorrhage were seen acutely.
3 Days Later- Patient MC : MRI T2 Flair

Axial T2 weighted Flair MR imaging showing hyperintense signal in the right and left grey-white matter interface and splenium of the corpus callosum.

Axial T2 weighted Flair MR Imaging showing hyperintense signal in the right posterior limb of the internal capsule and a left frontal lobe contusion.

Images from PACS, BIDMC

Edwin Chu, MS IV
Gillian Lieberman, MD
3 Days Later- Patient MC: MRI T2 Flair

Axial T2 weighted Flair MR imaging showing hyperintense signal in the corpus callosum

Images from PACS, BIDMC
3 Days Later - Patient MC: MR Susceptibility Weighted Imaging

Axial SW MR imaging showing hypo-intense signal in the right and left grey-white matter interface and a left frontal lobe contusion.

Axial SW MR imaging showing hypo-intense lesions in the right grey-white matter interface and splenium; left frontal lobe contusion.

Areas of Hemorrhage

Images from PACS, BIDMC

Edwin Chu, MS IV
Gillian Lieberman, MD
3 Days Later - Patient MC: MR Susceptibility Weighted Imaging

Axial T2 weighted SW MR imaging showing hypo-intense signal in the corpus callosum

Images from PACS, BIDMC

Edwin Chu, MS IV
Gillian Lieberman, MD
Diffuse Axonal Injury

Biomechanics, Pathogenesis, Stages of Damage, and Long-term Consequences
Diffuse Axonal Injury (DAI)

- Severe head trauma can produce diffuse axonal injury characterized by punctate hemorrhagic or non-hemorrhagic lesions primarily in white matter tracts.
- Common sites: Parasagittal white matter, grey-white matter junctions of the cerebral cortex, corpus callosum, and brainstem.
- Occurs in 40-50% of patients hospitalized for TBI.
- Affects more than 2 million people every year.

Edwin Chu, MS IV
Gillian Lieberman, MD
DAI and its Long-Term Consequences

- 26,000 deaths/yr are due to DAI
- 20,000-45,000 surviving patients/yr suffer neurobehavioral or physical impairments
- Average hospital cost per patient: $117,000
- Direct health care costs: $25 billion/year

Biomechanics of DAI

- Commonly referred to as a shear force injury
- Rapid head motions produce inertial forces which cause rotational acceleration of the brain leading to shearing and strain of axons
- Rapid stretch of an axon leads to damage to the neuron’s cytoskeleton. Axonal transport continues until local inflammation causes further cytoskeleton breakdown
Pathogenesis of Microscopic Axonal Changes

- Increased cytoskeleton damage + protein accumulation = axon disconnection
- Axon disconnection leads to irreversible damage
- Pathologic Feature: Bulb formation

Brain Injury

Influx of Na\(^+\) and Ca\(^{2+}\) through respective channels

Axonal Swelling

Axonal cytoskeleton damage

Accumulation of axonal transport proteins within swellings

Edwin Chu, MS IV
Gillian Lieberman, MD
Histopathology of DAI

Top: Low power view of hematoxylin-eosin stain demonstrating DAI and petechial hemorrhages

Below: Silver stain of the same area indicating the axonal terminal bulbs.

Edwin Chu, MS IV
Gillian Lieberman, MD
Stages of DAI

<table>
<thead>
<tr>
<th>Stage</th>
<th>Areas Affected</th>
</tr>
</thead>
</table>
| I | - parasagittal regions of the frontal lobes
 | - periventricular temporal lobes
 | - internal and external capsules
 | - cerebellum |
| II | Stage I areas + corpus callosum |
| III | Stage I + Stage II areas + dorsolateral quadrants of the rostral brain stem |

Imaging Modalities for Diffuse Axonal Injury
Imaging of DAI: CT

CT imaging is first line for any neurotrauma

Benefits
- Widely available in most hospitals in the US
- Comparatively inexpensive
- Good, quick test for injuries that require immediate surgical attention

Drawbacks
- Initially 50-80% of pts with DAI will have normal CT scans
- Less sensitivity for detecting DAI

Edwin Chu, MS IV
Gillian Lieberman, MD
Examples of DAI on CT Imaging: Companion Patient TC

- HPI: 22 y/o F being found down in the road, entangled with her bicycle, unresponsive, unhelmeted, pupils unequal. Initial CGS was 4 upon arrival to ED.
Companion Patient TC:
Axial Non-Contrast CT Imaging

Areas of Hemorrhage
Soft Tissue Edema

Images from PACS, BIDMC
Companion Patient TC: Axial Non-Contrast CT Imaging

Areas of Hemorrhage
Soft Tissue Edema

Images from PACS, BIDMC
Companion Patient TC:
Axial Non-Contrast CT Imaging

Areas of Hemorrhage

Images from PACS, BIDMC
More Examples: Non-Contrast CT Imaging showing Hemorrhagic DAI Lesions

Black arrows: areas of hemorrhagic foci
Imaging of DAI: MRI

- MRI has greater sensitivity in detecting DAI
- Commonly used techniques include Flair, DWI, and GRE, and SWI*
 - Kinoshita et al.- DWI sensitivity in detecting DAI is comparable to Flair
 - Tong et al.- Number of hemorrhagic DAI lesions seen on SWI was 6 times greater than that on conventional T2* weighted 2D GRE imaging and the volume of hemorrhage was approx 2 fold greater

* Flair- Fluid Attenuated Inversion Recovery
 DWI- Diffusion weighted Imaging
 GRE- Gradient Recalled Echo
 SWI- Susceptibility Weighted Imaging
T2 MR Imaging of DAI

Sagittal T2-weighted MR image showing hyper-intense signal within the corpus callosum (white arrows)

MR Flair: Conspicuity of DAI Lesions

MR DWI: Conspicuity of DAI Lesions

Edwin Chu, MS IV
Gillian Lieberman, MD
More Lesions are seen on Susceptibility Imaging: Comparing T2 and SWI

A) Axial T2 MRI
B) Axial Susceptibility-weighted MRI

Small hemorrhagic shearing injuries in the left frontal subcortical white matter (Black arrows)

Edwin Chu, MS IV
Gillian Lieberman, MD
More Lesions are seen on
Susceptibility Imaging: Comparing T2 and SWI

C) Axial T2 MRI

D) Axial Susceptibility-weighted MRI

Hemorrhagic shearing foci (open arrows) in the left frontal white matter, right subinsular region, and left splenium

The Emergence of MRI Diffusion Tensor Tractography (DTT)

- DTT is rapidly becoming another modality to look for DAI in the acute phase.
- Modality can characterize white matter integrity by measuring fractional anisotropy (FA).
- Fractional anisotropy is the degree of alignment of the underlying nerve fibers (ratio: 0 to 1).

Using DTT for Long-Term DAI Follow-up

- Skoglund et al.
 - 22 y/o F with closed head injury. Comparison images of Axial T2 and DTT at 6 days post-injury and 18 months post-injury

 - Results: In follow-up imaging, conventional MRI showed no pathology. However, in DTT imaging, FA values had improved but did not normalize.

 - Conclusion: MR-DTT may be more sensitive to DAI than conventional MR imaging.

Edwin Chu, MS IV
Gillian Lieberman, MD
Results: Long-Term DAI Follow-up with DTT

- a) 6 days post injury- Axial T2 MR image showing hyper-intense lesion in left pons
- b) 18 months post injury- Axial T2 MR image showing no lesion
- c) 6 days post injury- Axial DTT image showing decreased blue intensity
- d) 18 months post injury- Axial DTT image showing moderately improved blue intensity

Edwin Chu, MS IV
Gillian Lieberman, MD
Fractional Anisotropy in Long-Term DAI Follow-up

- FA values on left side improve 18 months post-injury but do not normalize to right-sided values

- Key:
 - dx – Patient’s right side
 - sin – Patient’s left side

Summary

- Diffuse Axonal Injury is caused by traumatic brain injury and can be characterized by punctate hemorrhagic or non-hemorrhagic lesions primarily in white matter tracts.
- MRI is now the imaging of choice for detecting DAI. SWI and DWI are the best techniques.
- DTT holds promising results as an imaging modality for the acute and long-term follow-up of DAI patients.
Acknowledgements

- Special thanks to Dr. Rafeeqeque Bhadelia for help with this index case and presentation
- Dr. Rivka Colen
- Dr. Gillian Lierberman
References

