CYSTICERCOSIS
IMAGING RESULTS IN VARIABLE PRESENTATIONS

Ashton Lehmann, Harvard Medical School Year III
Gillian Lieberman, MD
Our patient presents to ED with acute onset, worsening headache: “worst headache of my life”

Evaluation for subarachnoid hemorrhage with non-contrast computed tomography (CT)

Clinical Condition: Headache

Variant 3: Sudden onset of severe headache (“Worst headache of one’s life”, “thunderclap headache”).

<table>
<thead>
<tr>
<th>Radiologic Procedure</th>
<th>Rating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT head without contrast</td>
<td>9</td>
<td>Usage of CT vs MRI depends on local preference and availability.</td>
</tr>
<tr>
<td>CTA head with contrast</td>
<td>8</td>
<td>Usage of CT vs MRI depends on local preference and availability.</td>
</tr>
<tr>
<td>MRA head with or without contrast</td>
<td>8</td>
<td>Usage of CT vs MRI depends on local preference and availability.</td>
</tr>
<tr>
<td>Arteriography cervicocerebral</td>
<td>7</td>
<td>May be helpful after CT depending on CT findings.</td>
</tr>
<tr>
<td>MRI head without contrast</td>
<td>7</td>
<td>May be helpful after CT depending on CT findings.</td>
</tr>
<tr>
<td>MRI head without and with contrast</td>
<td>6</td>
<td>May be helpful after CT depending on CT findings.</td>
</tr>
<tr>
<td>CT head without and with contrast</td>
<td>6</td>
<td>May be helpful after CT depending on CT findings.</td>
</tr>
</tbody>
</table>

Rating Scale: 1, 2, 3 Usually not appropriate; 4, 5, 6 May be appropriate; 7, 8, 9 Usually appropriate

RRL: Relative Radiation Level

ACR Appropriateness Criteria; reviewed 2009.
Non-contrast computed tomography (CT) scan

Enlargement of lateral, 3rd, and 4th ventricles

Consistent with communicating hydrocephalus

Bilateral scattered calcifications throughout white matter

No acute intracranial hemorrhage, edema, or major infarct

Axial head CT (-C):

Enlarged lateral ventricles
Calcifications
Index Patient: CT Findings (2)

- Non-contrast computed tomography (CT) scan
- Enlargement of lateral, 3rd, and 4th ventricles
- Consistent with communicating hydrocephalus
- Bilateral scattered calcifications throughout white matter
- No acute intracranial hemorrhage, edema, or major infarct

Sagittal head CT (-C)
Enlarged ventricles: lateral, 3rd, 4th
Lumbar puncture (LP) showed lymphocytosis, concerning for viral infection

MR +/- contrast & HSV labs ordered

Headache now intermittent with movement; reports dizziness and blurred vision
Index Patient: MR Findings

- Magnetic Resonance (MR) imaging with and without contrast
- 1.3 cm cystic lesion in 4th ventricle causing obstructive hydrocephalus; seen here on T2 weighted

Image: PACS, BIDMC
Flow study indicated CSF flow into the 4th ventricle but no CSF flow into the foramina of Luschke and Magendie

Index Patient: Points

- Neurocysticercosis is highly suspected
 - Multiple calcifications seen on CT
 - Cyst seen on MR
- In the setting of obstructive hydrocephalus causing increased intracranial pressure, lumbar puncture (LP) is contraindicated
 - LP should not have been performed!
 - LP had been ordered when hydrocephalus appeared to be communicating (non-obstructive) on CT
 - Had obstructive hydrocephalus been identified earlier, LP would not have been performed

White et al., 2009b; Kimura-Hayama et al., 2010.
Taenia solium & Cysticercosis

Variable Patients & Presentations

Choice of Imaging Modality

Appearance on Different Imaging Modalities

Imaging Findings in Variable Presentations

Differential Diagnoses

Criteria for Definitive Diagnosis

Further Workup & Management

Choice of Imaging Modality

Appearance on Different Imaging Modalities

Imaging Findings in Variable Presentations

Differential Diagnoses

Criteria for Definitive Diagnosis

Further Workup & Management
Ingestion of cysts (in infected pork) → tapeworm infection ("taeniasis")

- Tapeworm eggs shed in stool of infected hosts → ingested (by same or different person) → tapeworm eggs hatch & cross intestinal mucosa → cyst deposition in tissues (3-8wks; "cysticercosis")
- Cysts: fluid within membranous walls; each contains scolex (rudimentary tapeworm)
- Viable cyst with intact wall: no immune response
- Natural death or therapy-induce death → inflammatory response no longer controlled → inflammation
- Most commonly involve CNS, eye, muscles

White et al., 2009a; White et al., 2009b; Kimura-Hayama et al., 2010 (also image).
Taenia solium & Cysticercosis

Variable Patients & Presentations

Choice of Imaging Modality

Appearance on Different Imaging Modalities

Imaging Findings in Variable Presentations

Differential Diagnoses

Criteria for Definitive Diagnosis

Further Workup & Management
Epidemiology

- >50 million worldwide with cysticercosis
- Endemic in areas of Central & South America, Sub-Saharan Africa, India, and Asia

Figure: Kimura-Hayama et al., 2010.
Variable Patients

- Higher in rural & peri-urban areas near pigs

Patients:
- Inhabitants of endemic areas
- Travelers to endemic areas
- Spread to other areas through globalization
 (e.g., cases in Orthodox Jewish communities)

- Most symptomatic patients 15-40y/o
 - Peak: 25-35y/o
 - With infection likely occurring at 5-15 y/o

White et al., 2009a; White et al., 2009b; Kimura-Hayama et al., 2010.
Symptoms dictated by location and stage of cysts

- Seizures (due to perilesional inflammation or calcifications)
- Altered consciousness
- Visual loss or disturbances
- Symptoms of increased intracranial pressure: headache, vomiting/nausea/dizziness, papilledema
- Symptoms of TIA/infarction (due to vascular complications – e.g., vasculitis)

Kimura-Hayama et al., 2010.
Ashton Lehmann, HMS III
Gillian Lieberman, MD

Taenia solium & Cysticercosis

Variable Patients & Presentations

Choice of Imaging Modality

Appearance on Different Imaging Modalities

Imaging Findings in Variable Presentations

Differential Diagnoses

Criteria for Definitive Diagnosis

Further Workup & Management
• **CT for initial evaluation**
 - Visualization of calcified cysts/lesions
 - Often sufficient for diagnosis
 - If inconclusive, MR may be necessary

• **MR for follow-up evaluation**
 - Evaluation of intraventricular or small lesions
 - Scolex visualization (even possible in some calcified lesions)
 - Follow-up after therapy
 - Evaluation of degenerative changes and perilesional inflammation (best with T2-weighted)
 - Drawbacks: expensive, scarce availability in endemic areas, poor sensitivity for detection of calcified lesions

Garcia & Del Brutto, 2003; White et al., 2009b.
Other Imaging Modalities

- **Ultrasound**
 - Ocular cysts
 - See cyst wall against vitreous humor
 - Requires scolex visualization for specificity

- **Plain film**
 - Extraneural cysticercosis
 - Cigar-shaped calcifications in muscle or subcutaneous tissue
 - Less sensitive: plain film catches ~1/2 of muscular calcifications that CT picks up

Khosla, 2011; Bustos et al., 2005.
Ashton Lehmann, HMS III
Gillian Lieberman, MD

Taenia Solium & Cysticercosis

Variable Patients & Presentations

Choice of Imaging Modality

Appearance on Different Imaging Modalities

Imaging Findings in Variable Presentations

Differential Diagnoses

Criteria for Definitive Diagnosis

Further Workup & Management

Agenda
Appearance on CT

- CT with contrast for Companion Patient #1
- Ring-enhancing pericystic inflammation
- Minimally enhancing cystic wall
- Hyperattenuating scolex
- Scolex not reliably visible on CT

Degenerating cysts with hypointense wall and hyperintense surrounding edema

Edema often best visualized on T2-weighted MRI

Companion Patient #2

Ashton Lehmann, HMS III
Gillian Lieberman, MD

Taenia solium & Cysticercosis

Variable Patients & Presentations

Choice of Imaging Modality

Appearance on Different Imaging Modalities

Imaging Findings in Variable Presentations

Differential Diagnoses

Criteria for Definitive Diagnosis

Further Workup & Management
3 main mechanisms of disease:
- Direct: Mass effect/obstruction due to parasite
- Indirect: Inflammatory response (e.g., edema, gliosis, arachnoiditis)
- Scarring: fibrosis, granulomas, calcifications

Above mechanisms combine \Rightarrow highly pleomorphic appearance of cysticercosis on imaging

Further variable appearances dependent upon:
- location of cyst(s)
- stage in life-cycle (can vary by lesion)

Sotelo et al., 1985; Kimura-Hayama et al., 2010.
Locations of Cysts: Overview

Cysticercosis

Neurocysticercosis

Parenchymal

Extraparenchymal

Intraventricular

Subarachnoid

Intraocular

Extraneural Cysticercosis

Any tissue, but most often:
- muscular
- subcutaneous

White et al., 2009b
Locations of Cysts: Overview

Cysticercosis

Neurocysticercosis

Extraneural Cysticercosis

Parenchymal

Extraparenchymal

Intraventricular

Subarachnoid

Intraocular

Spinal

Any tissue, but most often:
- muscular
- subcutaneous

White et al., 2009b
>60% of neurocysticercosis

Cysts in cerebral cortex or brainstem

Appear as cysts, enhancing lesions, or calcifications

Present as seizures, or encephalitic symptoms if many cysts

Locations of Cysts: Overview

Cysticercosis

Neurocysticercosis

- Parenchymal
- Extraparenchymal
 - Intraventricular
 - Subarachnoid
 - Intraocular
 - Spinal

Extraneural Cysticercosis

Any tissue, but most often:
- muscular
- subcutaneous

White et al., 2009b
10-20% of symptomatic cases
- Free floating in ventricles or attached to choroid plexus
- Trap in foramina or aqueduct → obstructive hydrocephalus
 - 50% of cases in 4th ventricle
 - Intermittent obstruction → intermittent symptoms associated with movement (Brun’s syndrome)
- CSF and cyst fluid = similar attenuation, so difficult to see with CT
- Hints: Obstructing hydrocephalus, CSF flow abnormalities, ventricular distortions
- Usually seen on MR due to cyst fluid and CSF having slightly different signal intensity on T1 or T2

White et al., 2009b; Teitelbaum et al., 1989; gross image: Kimura-Hayama et al., 2010; MR image: PACS, BIDMC.
Locations of Cysts: Overview

Cysticercosis

Neurocysticercosis

- Parenchymal
- Extraparenchymal
 - Intraventricular
 - Subarachnoid
 - Intraocular

Extraneural Cysticercosis

Any tissue, but most often:
- muscular
- subcutaneous

White et al., 2009b
In gyri, fissures, or cisterns

- Mass effect or arachnoiditis
 - Meningeal enhancement (focal or diffuse) with meningitis → chronic meningeal thickening → entrapped cranial nerve palsies
 - Usually without fever or signs of meningeal irritation
 - Vasculitis → ischemia
 - Communicating or obstructive hydrocephalus

- Growth not limited by brain parenchyma → grow up to 10 cm (esp. in Sylvian fissure)

Axial head T1-weighted MR of Companion Patient #5: subarachnoid cysts (arrows)

White et al., 2009b; image: Kimura-Hayama et al., 2010.
Locations of Cysts: Overview

Cysticercosis

Neurocysticercosis

Parenchymal

Extraparenchymal

Intraventricular

Subarachnoid

Spinal

Any tissue, but most often:

- muscular
- subcutaneous

Intraocular

White et al., 2009b
1-3% of cases

Impaired vision, recurrent eye pain, diplopia

Inflammation around degenerating cysts → chorioretinitis, retinal detachment, vasculitis → impaired vision

Evaluate pre-pharmacologic treatment with CT or ultrasound

Axial head CT (+C) of Companion Patient #6: Calcified cyst in right orbit subretinal space
Ashton Lehmann, HMS III
Gillian Lieberman, MD

Locations of Cysts: Overview

Cysticercosis

- Neurocysticercosis
 - Parenchymal
 - Extraparenchymal
 - Intraventricular
 - Subarachnoid
 - Intraocular
 - Spinal

- Extraneural Cysticercosis
 - Any tissue, but most often:
 - muscular
 - subcutaneous

White et al., 2009b
1.5% of cases:
Rarity likely due to “sieve effect” of narrow foramina of Luschke and Magendie

Usually in subarachnoid space → inflammatory and demyelinating changes in nerve roots →
radicular pain, paresthesias, sphincter disturbances

MR is superior to CT; myelography may show filling defect

White et al., 2009b; Kimura-Hayama et al., 2010; image: Neurology: Teaching NeuroImages:
http://www.neurology.org/content/77/23/e138/F1.expansion.html.
Locations of Cysts: Overview

Cysticercosis

Neurocysticercosis

Parenchymal

Intraventricular

Subarachnoid

Intraocular

Extraparenchymal

Spinal

Extraneural Cysticercosis

Any tissue, but most often:

- muscular
- subcutaneous

White et al., 2009b
- Found in ~1/2 of neurocysticercosis cases
- Subcutaneous and intramuscular cysts are usually asymptomatic, “cigar-shaped” calcifications
- If muscle involvement is extensive → myopathy
- Any tissue can be affected (e.g., liver, tongue, cardiac)

White et al., 2009b; gross: Kimura-Hayama et al., 2010; CT: Bustos et al., 2005.
- **Noncystic stage**: asymptomatic, no imaging findings

- **Vesicular stage**: viable cysts are associated with minimal inflammation
 - Nonenhancing, hypodense lesions (5-20mm)
 - 50% of cases show scolex/scolices (2-4mm)
 - Encysted T. solium usually die 2-6yrs post-infection → vigorous symptomatic inflammatory reaction

- **Colloidal stage**: lymphocytic infiltration of cyst wall & fluid
 - Inflammatory response around cysts → ring enhancing lesions with contrast enhancement
 - Scolex degenerates

- **Granular-nodular stage**: cyst retracts to form granulomatous nodule; fibrosis encompasses cyst; cavity collapses

- **Calcific stage**: calcification of necrotic (nonactive) larva → calcified nodule
 - Solid, nodular lesions (1-10mm, usually 2-4mm)

Imaging Findings in Life-Cycle Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>CT Findings</th>
<th>MR Imaging Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncystic</td>
<td>Often invisible</td>
<td>Often invisible</td>
</tr>
<tr>
<td>Vesicular*</td>
<td>10–20-mm cyst with fluid attenuation; cyst wall is thin and smooth; little or no pericystic edema or contrast enhancement; scolex appears as a small, round, isoattenuating structure (hole with dot appearance)</td>
<td>Cyst signal intensity similar to that of CSF on T1- and T2-weighted images; cyst wall is well defined and thin, with little or no enhancement on gadolinium-enhanced images; scolex (hole with dot appearance); iso- or hypointense relative to white matter on T1-weighted images; iso- to hyperintense relative to white matter on T2-weighted images; best seen on proton-density-weighted images</td>
</tr>
<tr>
<td>Colloidal vesicular†</td>
<td>Cyst may be hyperattenuating, pericystic enhancement on contrast-enhanced images, edema may be seen</td>
<td>Cyst contents hyperintense on T1- and T2-weighted images (proteinaceous fluid), cyst wall is thick and hypointense, pericystic edema (best seen on fluid-attenuated inversion recovery images), pericystic enhancement on gadolinium-enhanced images</td>
</tr>
<tr>
<td>Granular nodular</td>
<td>Similar to colloidal vesicular stage but with more edema, thicker ring enhancement</td>
<td>Similar to colloidal vesicular stage but with more edema, thicker ring enhancement</td>
</tr>
<tr>
<td>Calcified nodular</td>
<td>Hyperattenuating calcific nodules, no edema, no enhancement</td>
<td>Hypointense nodules, no edema, no enhancement</td>
</tr>
</tbody>
</table>

*In racemose neurocysticercosis, the scolex may not be seen.
† So-called encephalitic phase of neurocysticercosis.

Kimura-Hayama et al., 2010.
Taenia solium & Cysticercosis

Variable Patients & Presentations

Choice of Imaging Modality

Appearance on Different Imaging Modalities

Imaging Findings in Variable Presentations

Differential Diagnoses

Criteria for Definitive Diagnosis

Further Workup & Management
Multiple intracranial calcifications:
- Metabolic disorders, vascular malformations, intracranial neoplasms, idiopathic, physiologic (e.g., choroid, dura), parasitic (cysticercosis, paragonimiasis)

Ring enhancing lesion(s):
- If single: abscess (bacterial, fungal, toxoplasmosis), cysticercus cyst, glioblastoma multiforme, resolving hematoma, lymphoma, metastasis
- If multiple: metastases, multifocal infections disease (TB, histoplasmosis), demyelinating plaques of MS, parasitic (cysticercosis, toxoplasmosis, paragonimiasis, neurotrichinosis)

Obstructive hydrocephalus:
- Neoplasm, cyst (arachnoid, parasitic: cysticercus or paragonimus), abscess, tuberous sclerosis, hematoma, encephalitis, abscess, congenital

Cystic spinal lesion:
- Congenital, parasitic, posttraumatic syrinx

Reeder & Felson, 2003; White et al, 2009b; Kimura-Hayama et al., 2010.
Taenia solium & Cysticercosis

Variable Patients & Presentations

Choice of Imaging Modality

Appearance on Different Imaging Modalities

Imaging Findings in Variable Presentations

Differential Diagnoses

Criteria for Definitive Diagnosis

Further Workup & Management
Narrowing the Diagnosis

- Diagnosis largely based on radiographic imaging along with clinical presentation
 - CT usually sufficient
- Serologic tests can help (but may be falsely negative)
- Lumbar puncture (LP) for CSF assay can help
 - Contraindicated if elevated intracranial pressure (ICP)
 - Mildly elevated WBC, normal glucose and protein
 - +/- eosinophilic CSF
- Biopsy
 - Rarely necessary for CNS cysts
 - Useful for skin & muscle cysts

Serpa et al., 2006, White et al., 2009b.
Definitive Diagnosis

- Absolute criteria for cysticercosis:
 - Cystic lesion showing scolex on CT or MR
 - Scolex is pathognomonic for cysticercosis
 - Histologic demonstration of parasite from biopsy
 - Direct visualization of subretinal parasite by fundoscopic exam

- Any 1 of the above absolute criteria is sufficient for definitive diagnosis

Serpa et al., 2006, White et al., 2009b.
Definitive Diagnosis (2)

- Definitive diagnosis also achieved when:

 Lesions highly suggestive of neurocysticercosis on neuroimaging studies occur in the context of…
 - Clinical presentation suggestive of neurocysticercosis

 AND
 - Epidemiologic factor: household contact OR contact with endemic area

 AND
 - EITHER
 - Positive serology
 - Resolution of lesions following antihelminthic therapy

Serpa et al., 2006, White et al., 2009b.
Taenia Solium & Cysticercosis

Variable Patients & Presentations

Choice of Imaging Modality

Appearance on Different Imaging Modalities

Imaging Findings in Variable Presentations

Differential Diagnoses

Criteria for Definitive Diagnosis

Further Workup & Management
Evaluate for spinal and ocular cysts
- Inflammation around treated, degenerating cysts can cause previously asymptomatic cysts to become symptomatic
- Can lead to pain/paralysis/paresthesias (spinal) and blindness (ocular)

Treatment
- If incidental finding in asymptomatic patient: may do nothing
- Medical management:
 - Antiparasitics: albendazole, praziquantel
 - Cyst fluid becomes more proteinaceous and gelatinous: increased signal intensity on T1-weighted MR
 - Symptom control: anticonvulsants
 - Anti-inflammatory agents: corticosteroids
- Interventions:
 - Hydrocephalus: ventriculoperitoneal shunt for decompression
 - Cyst resection may be necessary (in acute setting or if nonresponsive to therapy)

White et al., 2009b; Kimura-Hayama et al., 2010.
Successful treatment is complicated by:

- Effectiveness of drugs → recurrence
- Undiagnosed cysts in various life stages → new symptoms with induced inflammation
- Large cysts burden → therapy inducing degeneration can produce massive inflammatory response → diffuse brain edema resembling encephalitis (with seizure, HA, N/V, altered consciousness, impaired vision, occasionally fever)

Follow-up

- Monitor post treatment/intervention with imaging
- Test of choice: MR with and without contrast

White et al., 2009b; Kimura-Hayama et al., 2010.
1 day later: Ventriculoperitoneal shunt placed to decompress obstructive hydrocephalus; shunt placement confirmed with CT (-C; top)

2 days later: MR of C, T, and L spines (+&1C) to evaluate for spinal cysticercosis: no cystic lesions found

The following week: serology confirms diagnosis

The following month: resection of cyst; post-operative evaluation with CT (bottom)

In subsequent months: monitoring with MR will occur

Images: PACS, BIDMC
References

Acknowledgments

Monica Agarwal, MD
Gillian Lieberman, MD
Claire Odom
The Advanced Elective and Core Clerkship Students

Thank you to all of you for making this a great month!