

Radiologic Findings in Multiple Sclerosis

John Ng, Harvard Medical School Year III Gillian Lieberman, MD

Courtesy of NMSS, Boston - www.nationalmssociety.org/

Objectives

 To introduce the basic framework of MS as it is currently understood

 To become familiar with the radiologic findings in MS patients

Multiple Sclerosis – The Basics

- 400,000 people currently diagnosed with MS
- Estimate of about 2.5 million people worldwide
- Typically begins in early adulthood with variable prognosis – 50% will require aid in walking within 15 years
- One of earliest neurological diseases known, described by Charcot in 1868
- Understanding of the condition has evolved and is intertwined with advances in neuroscience, immunology, medicine, and radiology

Clinical Presentation

- B.B., a 24 y.o. Haitian woman w/ 4 yr diagnosis of MS
- Intermittent sensory disturbances and parathesias in all four extremities
- Gait ataxia
- Visual diplopia
- Mental status difficulties memory, attention, and depression
- Received cyclophosphamide therapy and plasmapheresis within the past year
- MRI scans taken in March and in September

Diagnosis of MS

- "Disseminated attacks in space and time" [Poser Criteria, (Poser, 1983)]
 - Distinct neurological attacks in two different parts of the nervous system
 - At least two separate flare-ups
- MRI imaging is now a major part of the diagnosis and follow-up
 - T₂-weighted imaging
 - T₁ imaging with Gd-enhancement

Clinical/MRI Paradox

- Despite the radiologic findings that help with diagnosis, MRI lesion load are weakly correlated with clinical progression (Brex et al.)
- Proposed explanations
 - Not all lesions are equivalently important (lesion heterogeneity)
 - Lesion location in brain matters
 - Abnormalities in the normal appearing white matter (NAWM) as well as the normal appearing grey matter
 - Spinal cord involvement

Gd-enhancing Lesions

- Can be ring-enhancing or nodular
- Transient
- Variable in size and intensity

Probably indicative of active inflammation

T₂ Hyperintense Lesions

Probably indicative of chronic inflammation

Courtesy of PACS, BIDMC (R. scan is of another MS patient)

T₁ Hypointense Lesions

 Probably indicative of old regions of chronic inflammation

(L. scan is of our patient, B.B.)

(R. scan is of another MS patient) Courtesy of PACS, BIDMC

Dawson Fingers

Lesions tend to run along ventricles with "finger-like projections," called Dawson Fingers

(Scan is of another MS patient) Courtesy of PACS, BIDMC

Dilated Ventricles

 Reflective of cortical atrophy that occurs throughout the disease process, particularly during the late

stages

Courtesy of PACS, BIDMC

(Scan is of another MS patient)

Corpus Callosum Atrophy

The corpus callosum tends to have "moth-eaten" appearance and appears atrophied, especially in later stages

Courtesy of PACS, BIDMC

(Scan is of another MS patient)

Progression of MS

4 major classifications

Relapsing-Remitting (RR)

(85% are initial diagnosed with RR)

Relapsing-Remitting Primary Progressive

Secondary Progressive

(10%)

(50-60% of RR eventually become SP)

Progressive Relapsing

Pathophysiology

- Generally believed to be an autoimmune process
- Is a dynamic disease
- Order of pathologic process still not well understood
- Currently believed that axonal loss past threshold leads to clinical symptoms

Histopathology

- At site of lesion:
 - Edema
 - Recruitment of inflammatory cells
 - Demyelination
 - Loss of axons

Treatments used for MS

- Anti-inflammatory,
 - Corticosteroids
- Immunomodulatory
 - Beta-interferon
 - Natalizumab (suspended)
- Immunosuppressive
 - Cytotoxic therapy (cyclophosphamide, methotrexate, and others)
 - Plasmapheresis

The Road Ahead

- Better radiologic metrics that correlate well with clinical progression
- Better characterization of the lesions
- Better treatments for MS patients

Summary

- MS is a progressive neurologic disorder characterized by inflammation, demyelination, and axonal loss
- T₁, T₂, Gd-enhancing lesions are noted on MRI. Spinal cord lesions, cortical atrophy, and corpus callosum atrophy are also notable.

References-I

- Noseworthy et al. Multiple sclerosis.
 N Engl J Med. 2000 Sep 28;343(13):938-52.
- Keegan et al. Multiple sclerosis.
 Annu Rev Med. 2002;53:285-302. Review
- NMSS webpage <u>www.nmss.org</u>
- Barkhof, F., Gadolinium-enhanced Magnetic Resonance Imaging in Multiple Sclerosis. VU University Press. 1992.
- Charcot JM. 1868. Histologie de la sclerose en plaques. Gaz. Hop. Civils et militaries 140, 141, 143:554-55,7-8,66

References-II

- Brex et al. A Longitudinal Study of Abnormalities on MRI and Disability from Multiple Sclerosis. N Engl J Med. 2002 Jan 17;346(3):158-64.
- Poser CM, et al. 1983. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurolog. 13:227-331.
- Lucchinetti et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000 Jun;47(6):707-17.
- Meier DS, Weiner HL, Khoury SJ, Guttmann CR. Magnetic resonance imaging surrogates of multiple sclerosis pathology and their relationship to central nervous system atrophy. J Neuroimaging. 2004 Jul;14(3 Suppl):46S-53S
- Miller DH et al. Precise relaxation time measurements of normal-appearing white matter in inflammatory central nervous system disease. Magn Reson Med. 1989 Sep;11(3):331-6.

Acknowledgements

- Dr. Jeff Velez
- Dr. Marion Stein
- Larry Barbaras
- Dr. Gillian Lieberman
- Pamela Lepkowski