Internal Carotid Artery Dissection: Radiological Findings

Laura Rosow, HMS IV
Gillian Lieberman, MD
BIDMC Advanced Clerkship in Radiology
March 16, 2010
Outline

1. Patient presentation

2. Overview of internal carotid artery (ICA) anatomy and the pathophysiology of dissection

3. Menu of radiologic tests

4. Differential diagnosis
Our Patient, J.M.

ID/CC: 48 F, “sinus infection”

HPI:

• Right-sided facial pain x 7 days

• PCP diagnosed sinus infection, prescribed azithromycin → no improvement in pain

• 1 day prior to presentation, developed diffuse headache and “whooshing,” “fluttering” sensations in right ear

• Went to BID Needham ER
A contrast-enhanced CT of the facial bones and paranasal sinuses was performed.
“No evidence of sinus disease, abscess, or orbital cellulitis.”
Patient JM: ICAs on CT

Axial C+ Head CT

Right ICA

Left ICA
Patient JM: Marked stenosis of the Right ICA on CT

?Periluminal thrombus

Stenotic arterial lumen

Axial C+ CT PACS, BIDMC
Patient JM: Further Workup and Management

JM was transferred to the neurology service at BIDMC for additional imaging and management.

On taking a detailed history, it was learned that JM had undergone cervical chiropractic manipulation the day prior to developing her headache.

On examination, she was now noted to have a marked right Horner’s syndrome (ptosis/miosis).
An MRI/MRA of the head and neck was performed.
Patient JM: MRI Findings of Dissection

Increased signal within right ICA confirms periluminal hematoma (diagnostic of dissection)

Small luminal opening

Patent left ICA

Axial C+ T1 Fat-Saturated MRI Head/Neck
Patient JM: Three-Dimensional Reformatted MRI

Superior extent of lesion

Inferior extent of lesion

Carotid bifurcation

Coronal Post-gadolinium 3D Reformatted MRI Head/Neck
Further review of JM’s head MRI was negative for infarct or hemorrhage.

She was started on warfarin with a heparin bridge.

After 48 hours of monitoring, JM was discharged with plans for careful follow-up.

At 6 weeks post-discharge, a carotid ultrasound was performed…
Patient JM: Follow-up Carotid Ultrasound

Normal flow velocities throughout the right internal carotid artery suggest that it has successfully recanalized.
Patient JM: Follow-Up Head/Neck CTA 12 Weeks Post-Discharge

Patent lumen throughout the ICA
ICA Anatomy and Overview of ICA Dissection
ICA Anatomy

- Circle of Willis
- Carotid siphon
- Internal carotid artery
- External carotid artery
- Carotid bifurcation
- Common carotid artery

Coronal Post-Gadolinium 3D reformatted MRI
Overview of Arterial Dissection

Arteries have three layers:
- intima, media, adventitia

Dissection = a tear in the media that causes bleeding within the arterial wall.

Blood then “dissects” through the arterial wall longitudinally

Associated risks:
- compressive occlusion of artery
- perforation into the lumen
- thrombogenesis

Image courtesy of Dr. Caplan
Facts about ICA Dissection

- Most common form of cervical arterial dissection (annual incidence = 5/100,000)

- Occurs more commonly in patients with connective tissue disorders

- Either occurs spontaneously or secondary to trauma
 - “Trauma” has a wide range of meanings

- The ICA typically dissects extracranially, where it is most mobile/distensible.
Facts about ICA Dissection, Continued

- Typical symptoms:
 - Neck, face, head pain
 - Pulsatile tinnitus
 - Horner syndrome
 - Symptoms of cerebral ischemia (ICA territory)

- Many dissections recanalize/heal spontaneously

- Potential complications include thromboembolus and arterial wall defects (e.g. pseudoaneurysms)
Menu of Radiologic Tests
Tests Commonly Used to Diagnose/Follow ICA Dissections

- Color Duplex Ultrasound
- CT Angiography
- MRI/MRA
- Digital Subtraction Angiography
Color Duplex Ultrasound

Allows imaging of proximal wall of ICA and visualization of blood flow velocities.

Appearance in dissection: thickened, hypoechoic vessel wall (intramural hematoma). Flow velocity diminished. Intimal flap visible in <33%.

PROS:
- Noninvasive, quick, no contrast required
- 95-96% sensitivity in high-grade stenosis (e.g. patients with cerebral ischemia)*
- Offers a dynamic view of the vessel, similar to angiography

CONS:
- Mandible frequently impedes visualization
- Decreased sensitivity in cases of low-grade stenosis (71%)*
- Flow velocity measurements may be confounded by comorbid conditions (e.g. AVM, vasospasm)

Rodallec MH et al. (2008)
Companion Patient #1: Common Carotid Dissection with True and False Lumina on Ultrasound

Intimal flap
CT Angiography

High-resolution, high-contrast images. Often combined with non-contrast CT to evaluate for intracranial hemorrhage.

Appearance in dissection: Intramural thrombus/hematoma appears as low attenuation crescent; diameter of the ICA usually increased.

May see dissection flap ± double lumen.

PROS:
- Noninvasive
- Images often in close agreement with those of conventional angiography*
- Allows 3D reconstructions for better visualization of dissections.

CONS:
- Low attenuation crescent non-specific for intramural hematoma (e.g. can also be seen in atheromatous plaque)
- Less favorable option for patients with renal insufficiency/failure

*Leclerc X et al. (1996)
Companion Patient #2: Bilateral ICA Dissections on CT Angiography

Axial Head/Neck CTA

Near-total occlusion of right ICA

Lumen Low attenuation crescent
Companion Patient #2: “String Sign”

Marked intraluminal narrowing creates a “string-like” appearance in the area of dissection.

Coronal Curved Reformat Head/Neck CTA
Companion Patient #3: ICA Dissection with True and False Lumina on CTA

Dissected ICA with true and false lumina

Axial Head/Neck CTA

PACS, BIDMC
MRI/MRA

Wide variety of MR imaging paradigms allows for multiple views of dissection with differing enhancement.

On T1-weighted imaging, blood appears as hyperintense, due to paramagnetic properties of hemoglobin breakdown products.

PROS:
- Hyperintensity of blood allows distinction from plaque and other soft tissue densities
- Excellent sensitivity (95%) and specificity (99%) for ICA dissection*

CONS:
- Not as useful for early diagnosis (blood originally appears isointense, then becomes hyperintense as it breaks down over 2-3 days)
- Scans have lengthy acquisition times, require potentially toxic contrast

*Levy C et al. (1994)
Digital Subtraction Angiography

Commonly regarded as the "gold standard"

Typical signs of dissection include: "string sign," "string and pearl sign" (focal narrowing with distal dilatation), "flame sign" (tapered occlusion sparing carotid bulb), occlusion, and/or pseudoaneurysm.

Pathognomonic signs (double lumen, intimal flap) are rarely observed.*

PROS:
- Can observe vessel in real time, obtain information about flow velocity, reconstitution of luminal flow, etc.
- Consistent image quality (MR and CT can be easily degraded by artifact)

CONS:
- Does not provide detailed information about the arterial wall (thickness, presence of hematoma)
- Expensive procedure, lengthy
- Risks associated with procedure: hematoma, perforation, renal failure, etc.

Rodallec MH et al. (2008)
Companion Patient #3: Chronic ICA Dissection with Pseudoaneurysm on DSA

- Pseudoaneurysm
- Bifurcation
- Common carotid

Sagittal Digital Subtraction Angiography
Differential Diagnosis
Certain conditions may appear similar to ICA dissection on angiography.

Here, we will review two such conditions.
Companion Patient #4: Atheromatous Plaque

Distinguishing characteristics:

1) **Location** of the lesion: plaques are often located at the carotid bifurcation, whereas dissections typically occur more superiorly.

2) **Size** of the lesion: dissections frequently involve long sections of artery, whereas plaques are often more focal/discrete.

3) **Patient history**: cardiovascular risk factors, evidence of plaque burden elsewhere in the circulation, etc.
Companion Patient #5: Fibromuscular dysplasia

Distinguishing characteristics:

1) Classic “Beads on a string” appearance, indicating irregular narrowing of the arterial lumen, (dissection typically appears as a sudden, smooth change in caliber).

2) Signs of fibromuscular dysplasia will likely be present elsewhere in the arterial circulation (e.g. vertebral artery in this patient).

Sagittal Head/Neck CTA
Summary

We have discussed:

- A common presentation of internal carotid artery dissection

- ICA anatomy and the pathogenesis of ICA dissection

- The four most commonly-used imaging modalities in diagnosing and monitoring ICA dissections:
 - Color duplex ultrasound
 - CT angiography
 - MRI/MRA
 - Digital subtraction angiography

- Two conditions that can appear similar to carotid artery dissection and how to distinguish these diagnoses on imaging
Acknowledgements

Dr. Aaron Hochberg – Resident in Radiology
Dr. David Hackney – Attending in Neuroradiology
Dr. Sandeep Kumar – Stroke Neurologist
Dr. Magdy Selim – Stroke Neurologist
Dr. Louis Caplan – Stroke Neurologist
Dr. Gillian Lieberman – Radiology Course Director
Maria Levantakis – Radiology Education Coordinator

