Intracranial Vascular Malformations

Jonathan F. Fox, Harvard Medical School Year III
Gillian Lieberman, MD

November 2002
Patient Presentation

• 43 y/o RHW with no significant PMH presents to ED after isolated episode sz activity
• FH significant for mother & brother with intracranial aneurysms; mother also has Hx sz activity
• PE demonstrates no focal findings
• Labs benign
• Imaging studies performed
Imaging Findings

• CT +/- contrast
 – 2 rounded, hyperdense, ill-defined, non-enhancing lesions in R frontal & temporal lobes
 – No mass effect, surrounding hypodensity
Imaging Findings

- CT +/- contrast
 - 2 rounded, hyperdense, ill-defined, non-enhancing lesions in R frontal & temporal lobes
 - No mass effect or surrounding hypodensity

Image source: BIDMC PACS.
Imaging Findings

- **CT +/- contrast**
 - 2 rounded, hyperdense, ill-defined, non-enhancing lesions in R frontal & temporal lobes
 - No mass effect, surrounding hypodensity

- **MR +/- Gado**
 - T1 & T2 images showing heterogeneous SI in corresponding regions
 - GE images showing marked susceptibility
Imaging Findings

• CT +/- contrast
 – 2 rounded, hyperdense, ill-defined, non-enhancing lesions in R frontal & temporal lobes
 – No mass effect, surrounding hypodensity

• MR +/- Gado
 – T1 & T2 images showing heterogeneous SI in corresponding regions
 – GE images showing marked susceptibility
Imaging Findings

• CT +/- contrast
 – 2 rounded, hyperdense, ill-defined, non-enhancing lesions in R frontal & temporal lobes
 – No mass effect, surrounding hypodensity

• MR +/- Gado
 – T1 & T2 images showing heterogeneous SI in corresponding regions
 – GE images showing marked susceptibility

• Dx Cavernous Angioma

Image source: BIDMC PACS.
Agenda

- Introduction to Intracranial Vascular Malformations
 - Terminology
 - Classification
 - Pathology
 - Clinical Presentation
 - Diagnostic Evaluation & Imaging Findings
- Review of Vascular Anatomy of the Brain
- MR Principles
 - T1 vs. T2 contrast
 - Evolution of blood & blood break-down product SI
Intracranial Vascular Malformations

- Classification
 - Arteriovenous malformations (AVMs)
 - Parenchymal (pial)
 - Dural
 - Mixed Pial-dural
 - Capillary telangiectasias
 - Cavernous angiomas
 - Venous malformations
 - Venous angioma
 - Vein of Galen malformations
 - Venous varix
Intracranial Vascular Malformations—Terminology

- **Angioma**
 - *angeion* (vessel, cavity) + *oma* (tumor, swelling)
 - defn: swelling due to proliferation with or without dilatation of vessels
 - hem–angioma
 - lymph–angioma

- **Telangiectasia**
 - *telos* (end) + *angeion* + *ektasis* (stretching out)
 - defn: dilatation of the previously existing small or terminal vessels

- **Varix**
 - *varix* (dilated vein)
 - defn: dilated vein or vessel
Intracranial Vascular Malformations

- Classification
 - Arteriovenous malformations (AVMs)
 - Parenchymal (pial)
 - Dural
 - Mixed Pial-dural
 - Capillary telangiectasias
 - Cavernous angiomas
 - Venous malformations
 - Venous angioma
 - Vein of Galen malformations
 - Venous varix
Intracranial Vascular Malformations

• Classification
 – Arteriovenous malformations (AVMs)
 • Parenchymal (pial)
 • Dural
 • Mixed Pial-dural
 – Capillary telangiectasias
 – Cavernous angiomas
 – Venous malformations
 • Venous angioma
 • Vein of Galen malformations
 • Venous varix
Cavernous Angiomas (Cavernomas)

- **Pathology**
 - lobulated collection of dilated endothelial-lined vascular channels
 - no normal brain in lesion
 - contain hemorrhage at different stages

- **Etiology**
 - congenital

- **Location**
 - 80% supratentorial
 - 50-80% multiple

- **Age at presentation**
 - 20-40 y/o

- **Symptoms**
 - sz, focal neuro deficits, HA

- **Hemorrhage risk**
 - <1%/year (risk ↑ with Hx prior bleed)
 - occult bleeds common

Cavernous Angiomas

- Imaging
 - CT
 - iso-/hyperdense
 - little/no mass effect, edema
 - minimal enhancement
 - occasional calcification
 - Angio
 - usually angiographically occult

CT (top) & MRA (bottom).
Image source: BIDMC PACS.
Revising Anatomy

- Arterial Circulation
 - Anterior
 - ICA
 - MCA
 - ACA
 - AComm
 - Posterior
 - Vertebral
 - ASA
 - PICA
 - Basilar
 - AICA
 - SCA
 - PCA
 - PComm

Revising Anatomy

• Arterial Circulation
 - Anterior
 • ICA
 • MCA
 • ACA
 • AComm
 - Posterior
 • Vertebral
 • ASA
 • PICA
 • Basilar
 • AICA
 • SCA
 • PCA
 • PComm

Revising Anatomy

Our lesion?

ICA (intrapetrous)
ICA (extracranial)
Vertebral

MCA
ACA
PCA
SCA
Basilar

Image source: BIDMC PACS.
Revising Anatomy

• Venous Circulation
 – Superior sagittal sinus (1)
 – Inferior sagittal sinus
 – Cavernous sinus
 – Basal vein (of Rosenthal)
 – Great cerebral vein (of Galen) (6)
 – Straight sinus (2)
 – Confluence of sinuses (3)
 – Transverse sinuses (4)
 – Sigmoid sinus (5)
 – Internal jugular
Cavernous Angiomas

• Imaging
 – MR
 • Focal area with mixed hypointense & hyperintense signal
 • “blooms” on GE sequences

• MR Take-home
 – Appearance of cavernoma on MR reflects presence of blood products of different ages

Clockwise from top left: T1, T2, flair and susceptibility MR.
Image source: BIDMC PACS.
Protons & Magnetic Fields

Image source: Mitchell, MRI Principles.
Energy In, Energy Out

Image source: Mitchell, MRI Principles.
Energy In, Energy Out

Excitation (RF) pulse

Longitudinal magnetization

Transverse magnetization
Energy In, Energy Out

Excitation (RF) pulse

Longitudinal magnetization

Transverse magnetization
Energy In, Energy Out

Longitudinal magnetization

Transverse magnetization

Excitation (RF) pulse
Energy In, Energy Out

- Longitudinal magnetization
- Transverse magnetization

Excitation (RF) pulse
Energy In, *Energy Out*

- Longitudinal magnetization
- Transverse magnetization
Energy In, *Energy Out*

- Longitudinal magnetization
- Transverse magnetization
Energy In, *Energy Out*

Longitudinal magnetization

Transverse magnetization
Energy In, Energy Out

Longitudinal magnetization

Transverse magnetization
T1 Contrast: Recovery of Longitudinal Magnetization

Image source: Mitchell, MRI Principles.
Susceptibility: Local Magnetic Effects

Image source: Mitchell, MRI Principles.
T1 Contrast: Recovery of Longitudinal Magnetization

Image source: Mitchell, MRI Principles.
T2 Contrast: Decay (Dephasing) of Transverse Magnetization

Image source: Mitchell, MRI Principles.
Evolution of Hemorrhage SI

- Oxyhemoglobin: Hyperintense
- Deoxyhemoglobin: Slightly Hyper
- Methemoglobin: Isointense
- Hemosiderin: Hypointense

Figure adapted from Zimmerman, *Neuroimaging*.

H. J. Fox, HMS III
G. Lieberman, MD

November 2002
Evolution of Hemorrhage SI

<table>
<thead>
<tr>
<th>Phase</th>
<th>Time</th>
<th>Blood Product</th>
<th>T1</th>
<th>T2</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperacute</td>
<td>Minutes to hours</td>
<td>Oxyhemoglobin</td>
<td>–</td>
<td>↑</td>
<td>Isointense to fluid.</td>
</tr>
<tr>
<td>Acute</td>
<td>Hours to several days</td>
<td>Deoxyhemoglobin</td>
<td>↓</td>
<td>↓↓</td>
<td>Can have surrounding high SI on T2W.</td>
</tr>
<tr>
<td>Subacute</td>
<td>24 hours to 2 weeks</td>
<td>Methemoglobin</td>
<td>↑↑↑</td>
<td>early ↓ then ↑</td>
<td>Begins at periphery.</td>
</tr>
<tr>
<td>Chronic</td>
<td>Weeks to years</td>
<td>Hemosiderin</td>
<td>↑</td>
<td>↓↓↓↓</td>
<td>Begins at periphery.</td>
</tr>
</tbody>
</table>

Adapted from Zimmerman, *Neuroimaging*. November 2002
Cavernous Angiomas – “Blooming”

Image source: BIDMC PACS.
Bloomin’ Conclusion

• Introduction to Intracranial Vascular Malformations
 – Terminology
 – Classification
 – Pathology
 – Clinical Presentation
 – Diagnostic Evaluation & Imaging Findings

• Review of Vascular Anatomy of the Brain

• MR Principles
 – T1 vs. T2 contrast
 – Evolution of blood & blood break-down product SI
References

Acknowledgements

- Chad Brecher, MD
 — for providing case references

- Gillian Lieberman, MD
 — for her enthusiasm for teaching

- Pamela Lepkowski
 — for help with PowerPoint and PACS

- Larry Barbaras and Cara Lyn D’amour
 — our Webmasters