Atlas of Ultrasound Findings in Down Syndrome

Marjorie Galler
Harvard Medical School Year III
Gillian Lieberman, MD
Agenda

• Background of Down Syndrome
• Patient Cases
• Menu of Tests
• Full Fetal Ultrasound
• Screening Methods for Down Syndrome
• Ultrasound Findings
• Summary
Down Syndrome: Background

- **Trisomy 21**: Most common chromosomal abnormality among liveborn infants (1/629)
- **Caused by chromosomal aberration**
 - Most often non-disjunction during maternal meiotic segregation
 - Strong association with increased maternal age
 - Less often via Robertsonian translocation

Down Syndrome: Clinical Features

- Mental Retardation
- Congenital heart defects (50%)
- Characteristic facies (90%):
 - upslanting palpebral fissure
 - epicanthal folds
 - flat nasal bridge
 - small ears
 - macroglossia
- Dysmorphic features:
 - transverse palmar crease
 - hypotonia
 - hyperextensible joints
- Increased rates of disease:
 - Alzheimer’s disease
 - leukemia
 - infections

Our Patient: Presentation

• 32-year-old female G1P0 presenting at 20 weeks 1 day gestational age by dates for routine full fetal survey
 – Declined genetic screening
 – No known history of inherited genetic or chromosomal disorders
Menu of Tests: Ultrasound

– Advantages:
 • Non-invasive
 • Not harmful to fetus
 • Cost-effective
 • Portable
 • Can guide procedures

– Disadvantages
 • Highly operator-dependent

http://www.umm.edu/pregnancy/000233.htm
Ultrasound: Mechanics

- Piezoelectric crystals convert electrical energy into sound waves that are released in synchronized pulses.
- Transducer then "listens" for the returning echoes.
- Real-time image created from sound waves reflected back from organs, fluids and tissue interfaces of the fetus.
Ultrasound: Safety

- Should only be performed with valid medical indication and with lowest possible exposure setting to gain necessary information
 - Recent studies show that prolonged ultrasound exposure may affect migration of brain cells in fetal mice (Rakic 2006)
- “Keepsake fetal imaging” is not condoned by FDA or AIUM!
- Routine 2nd trimester full fetal survey is current recommendation
Routine 2nd Trimester Prenatal Ultrasound

• Purpose is to obtain information to enable provision of optimal antenatal and perinatal care
• Information Obtained:
 – Fetal viability
 – Gestational age, expected date of delivery
 – Number of fetuses
 – Fetal survey to detect congenital anomalies
 – Assessment of amniotic fluid volume
 – Placental location (2nd trimester)
• Performed 18-20 weeks – Why?
 – Optimal balance between visualization of anatomy and time for diagnostic procedures and legal termination
2nd Trimester US Findings of Trisomy 21

1) Major Structural Defects
 – Aneuploidy often associated with anomalies
 – NB: 2-3% of infants are found to have major birth defects, not all with T21

2) “Soft-Signs”
 - Markers which increase risk but alone are of uncertain clinical significance. Previously utilized in ‘genetic sonogram’ to calculate risk based on quantity of markers found
 - Now, presence of any marker leads to referral for fetal karyotyping
 - The more soft signs evident, the higher the risk
Major Structural Defects associated with aneuploidy

- **CNS:**
 - Ventriculomegaly
 - Dysgenesis of corpus callosum
 - Abnormal posterior fossa

- **MSK:**
 - Syndactyly
 - Clinodactyly

- **Face:**
 - Cleft palate
 - Low set/small ears
 - Macroglossia
 - Micrognathia

- **Cardiac:**
 - VSD
 - Endocardial cushion defect
 - Hypoplastic left heart syndrome
 - Tetralogy of Fallot

- **GI:**
 - Esophageal/duodenal atresia
 - Diaphragmatic hernia,
 - Ompalocele

- **GU:**
 - Hydronephrosis
 - Renal Agenesis
2nd Trimester Sonographic Markers
Aka “Soft Signs”

- Nuchal fold
- Absent/hypoplastic nasal bone
- Short femur
- Short humerus
- Echogenic bowel
- Echogenic intracardiac focus
- Pyelectasis
- Heart defect
- Mild ventriculomegaly
- Hypoplasia of fifth digit
- Wide iliac angle
- Ear length
- Frontothalamic distance
Back to our Patient

- 32-year-old female G1P0 presenting at 20 weeks 1 day gestational age by dates for routine full fetal survey
 - Declined genetic screening
 - No known history of inherited genetic or chromosomal disorders
Our Patient: Fetal Ventriculomegaly on 20w US

Transverse Ultrasound
- 17mm Dilated Right Lateral Ventricle
- Dangling Chorioid
Ventriculomegaly

- Enlargement of cerebral ventricles which represents abnormal brain development
- Measurement taken at atrium of lateral ventricle; portion where body, posterior horn and temporal horn converge
 - Ventriculomegaly >10 mm width
 - Severe ventriculomegaly >15mm width
 - Dangling choroid plexus characteristic in severe cases
- DDx: Wide variety genetic and environmental causes
 - T21, 18, 13 (5-25% risk of aneuploidy)
 - CMV and Toxoplasmosis
Our Patient: Bilateral hydronephrosis on 20w US

Transverse Ultrasound
- 6 mm dilated left kidney
- 5 mm dilated right kidney
- Aorta
- IVC
- Spinal Column

Courtesy of Dr. Olga Brook
Renal Pyelectasis

- Enlargement of the fluid-filled renal pelvis (>4mm)
- DDx:
 - Commonly seen in normal fetuses (2-3%)
 - May be related to maternal hydration, fetal bladder distention
 - Look for flow at the bladder, reimage kidneys because enlargement may be dynamic
 - GU malformation
 - Fetal VUJ obstruction
 - Posterior urethral valves
 - Vesicoureteric reflux
 - Duplex kidney
 - Down Syndrome - soft sign (17%)
Companion Patient #1

• 33-year-old female G1P0 presenting at 16 weeks 2 days gestational age by dates for fetal survey after abnormal quadruple screen result
 – Abnormal quadruple screen revealed 1 in 13 risk of T21
 - Age-related risk was 1 in 625
Let’s continue to discuss screening
Aneuploidy Screening Basics

- **ACOG 2007 Practice Guidelines:**
 - All women should be offered aneuploidy screening before 20 weeks gestation
 - All women should have the option of invasive testing, regardless of maternal age

- Purpose of screening is to identify highest risk pregnancies for invasive diagnostic procedure
Aneuploidy Screening Options

- First trimester combined test
- Full integrated test
- Quadruple test
- Cell-free fetal DNA test
Screening: 1st Trimester Combined Test

• Consists of:
 – Ultrasound Measurements: 10-13 weeks GA
 • Nuchal Translucency (NT) and gestational age (GA) by crown-rump length
 – Serum Assay: 9-13 weeks GA
 • Pregnancy-associated plasma protein-A (PAPP-A)
 • Beta human chorionic gonadotropin (β-hCG)

• Pros:
 – risk assessment available early

• Cons:
 – follow-up test is chorionic villus sampling (CVS) with higher risk of procedure-related pregnancy loss compared to amniocentesis
Screening: Full Integrated Test

• Consists of:
 – Ultrasound Measurements: 10-13 weeks GA
 • Nuchal Translucency (NT)
 – Serum Assay:
 • PAPP-A: 10-13 weeks
 • β-hCG, alpha fetoprotein (AFP), unconjugated estriol (uE3), inhibin A: 15-18 weeks

• Pros:
 – highest detection rate, lowest positive screen rate

• Cons:
 – risk estimate not available until 2nd trimester
Screening: Quadruple Test

• Consists of:
 – Serum Assay: 15-18 weeks GA
 • AFP, β-hCG, uE3, inhibin A

• Pro:
 – option for women presenting in 2nd trimester for prenatal care
 • Can be performed as late as 22 weeks

• Con:
 – risk estimate not available until 2nd trimester
Screening: cell-free fetal DNA

- **Consists of:**
 - Maternal plasma-based test to detect trisomy 21, 18, 13 after 10 weeks of gestation.

- **Pro:**
 - >98% detection rate, false positive rate <0.5%
 - early detection

- **Con:**
 - expensive; not covered by all insurance
 - not universally recommended as of yet
T21 Screening Method Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>Consists of</th>
<th>Gestational Age</th>
<th>Detection Rate (%)</th>
<th>False Positive Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Trimester Combined</td>
<td>• NT, PAPP-A, Beta-hCG</td>
<td>9-13 weeks</td>
<td>85%</td>
<td>4.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95%</td>
<td>21%</td>
</tr>
<tr>
<td>Full Integrated</td>
<td>• 10 wks: NT, PAPP-A, AFP</td>
<td>10-13 weeks</td>
<td>85%</td>
<td>4.4%</td>
</tr>
<tr>
<td></td>
<td>• 15 wks: uE3, hCG, inhibin A</td>
<td>15-18 weeks</td>
<td>95%</td>
<td>17%</td>
</tr>
<tr>
<td>Quadruple</td>
<td>• AFP, uE3, hCG, inhibin A</td>
<td>15-18 weeks</td>
<td>85%</td>
<td>7.3%</td>
</tr>
<tr>
<td></td>
<td>• Genomic sequencing</td>
<td>> 10 weeks</td>
<td>>98%</td>
<td><0.5%</td>
</tr>
</tbody>
</table>

Data per FASTER and SURUSS trials
Nuchal Translucency (NT)

- NT = increased sonolucent area at back of fetal neck representing fluid between skin and soft tissue (>3mm)

- Criteria:
 1) Crown-rump length (35-84mm at 11-13 wks)
 2) Mid-sagittal plane
 3) Fetus in neutral position without chin flexed
 4) Fetus occupies 75% of image
 5) Distinguish between fetal skin and amnion
Companion # 2: NT Measurement on US

Sagittal Ultrasound
- 6.6 mm NT
- Amnion
- Fetal Skin
- Absent nasal bone
Back to Companion Pt #1

• 33-year-old female G1P0 presenting at 16 weeks 2 days gestational age by dates for fetal survey after abnormal quadruple screen result
 – Abnormal quadruple screen revealed 1 in 13 risk of T21
 • Age-related risk was 1 in 625
Companion Pt #1: Increased Nuchal Fold on 16w US

Transverse Ultrasound
- 9.7 mm Nuchal Fold
- Cerebellar Hemispheres
- Cavum Septum Pellucidum
Nuchal Fold

• Measurement:
 – Second trimester (versus NT in first trimester)
 • ≥6mm between 15-20 weeks is abnormal
 – Distance between outer edge of occipital bone to outer margin of skin
 – Taken in transverse plane (vs NT in sagittal plane)

• DDx:
 – Down Syndrome - soft sign
 • Most sensitive (40-50% and specific (99%) single ultrasound marker for DS in second trimester
 – Other aneuploidy
 – Normal fetus (0.5%)
Companion Pt #1: Echogenic Bowel on 16w US

Transverse Ultrasound
- Echogenic Bowel
- Liver

Courtesy of Dr. Olga Brook
Echogenic Bowel

- Defined as bowel echogenicity similar or greater than adjacent bone (i.e. iliac crest)
 - Note that a higher frequency transducer can lead to overdiagnosis

- Ddx:
 - Normal variant (0.5% normal fetuses)
 - Swallowed intra-amniotic blood
 - Down Syndrome – soft sign (LR of 6.5)
 - Cystic fibrosis
 - Congenital infection
 - Gastrointestinal malformation
Companion Pt #1: Hypoplastic 5th Digit on 16w US

Sagittal Ultrasound
- Hypoplastic 5th Middle Phalanx
- Carpals
Hypoplastic Fifth Digit

- 60% of T21 infants have hypoplasia of middle phalanx of 5th digit
 - Associated with clinodactyly, curvature of fifth finger toward adjacent fourth finger

- DDx:
 - Down Syndrome - soft sign
 - Trisomy 18
 - Normal variant (3% normal patients)
 - Dwarfism
 - Brachydactylic syndromes

https://www.pediatriccareonline.org
Our Patients’ Follow Up

• Both patients underwent amniocentesis for fetal karyotyping, both demonstrating trisomy 21
• Both patients decided to terminate their pregnancies
 – 87-95% of pregnancies prenatally diagnosed with Down Syndrome are terminated
• Both patients went on to subsequently deliver euploidic infants.
 • Risk for subsequent aneuploidic fetus is double the age-associated risk
Summary

• Down syndrome, the most common chromosomal abnormality in liveborn infants

• There are many screening options; serum assay +/- nuchal translucency, cell-free fetal DNA
 – Goal of identifying highest risk patients for diagnostic testing

• Down Syndrome is associated with multiple findings on ultrasound; none are 100% sensitive and specific for T21
 – major structural defects (i.e. ventriculomegaly)
 – ‘soft signs’ (i.e. pyelectasis, EIF, echogenic bowel, nuchal fold, hypoplastic phalanx of fifth digit)
Acknowledgements

• Dr. Gillian Lieberman
• Dr. Olga Brook
• Dr. David Glazier
• William Winkelman, MS IV
References

- Benacerraf BR. Sonographic findings associated with fetal aneuploidiy. In: UptoDate, Basow, DS (Ed), UpToDate, Waltham, MA, 2013.
- Britt, David W; Risinger, Samantha T; Miller, Virginia; Mans, Mary K; Krivchenia, Eric L; Evans, Mark I (1999). "Determinants of parental decisions after the prenatal diagnosis of Down syndrome: Bringing in context". *American Journal of Medical Genetics* 93 (5): 410–16.
- Messerlian GM, Canick JA. Overview of prenatal screening and diagnosis of Down syndrome. In: UptoDate, Basow, DS (Ed), UpToDate, Waltham, MA, 2013
- Ostermaier KK. Clinical features and diagnosis of Down Syndrome. In: UptoDate, Basow, DS (Ed), UpToDate, Waltham, MA, 2013
- Sfakianaki AK, Copel J. Routine prenatal ultrasonography as a screening tool. In: UptoDate, Basow, DS (Ed), UpToDate, Waltham, MA, 2013.