Finding the Great Mimicker: Pheochromocytoma

Samuel Kim, Harvard Medical School Year III
Gillian Lieberman, MD
Brief Overview

• Index patient’s presentation
• CT, Ultrasound, MRI images from patient
• Clinical background on pheochromocytoma
• Key imaging features for adrenal tumors/pheochromocytoma
• Quiz
• References
• Supplemental Slides (Biochemistry, Ultrasound Imaging, Pathology)
Part I: Our Patient’s Presentation

Middle aged woman with history of membranous nephropathy, aortic regurgitation, and hypertension who underwent CT Abdomen/Pelvis evaluation for recurrent renal calculus. An incidental adrenal lesion was found. Patient denied symptoms of palpitations, headaches, hypertension, or diaphoresis at this time.

– No known family of endocrine problems.
Our Patient: Adrenal Mass on CT

Our patient’s imaging

Axial noncontrast CT imaging demonstrating a 2.7x2.7cm left adrenal mass measuring **16 HU unit** (white arrow), “consistent with left adrenal adenoma”.

a-aorta, b-spleen

Patient underwent CT scan of chest for evaluation of pulmonary nodule the following year and the adrenal lesion was found to be stable without significant change
Our Patient: Adrenal Lesion on Ultrasound 1 year later

Patient subsequently underwent renal ultrasound for follow up evaluation of stones. Results consistent with a “complex, largely cystic, left adrenal lesion measuring 4.9cm”. Sagittal ultrasound shows adrenal lesion with anechoic central component (white arrow) with a hypoechogenic peripheral rim measuring 4.9cm, just superior to the left kidney.

*At this time, patient started to complain of loss of 10lbs within a year, occasional chest pain when lying down at night, increased anxiety and sweating. Physical exam, positive for orthostatic hypotension. Systolic blood pressures have been somewhat elevated in the 140s.
Our Patient: Adrenal Lesion on Axial MRI

Our patient’s imaging: Given concern on patient’s ultrasound, patient underwent MRI evaluation. Imaging revealed 4.5x4.3cm left adrenal mass with internal hemorrhage and an associated avidly enhancing wall consistent with a cystic adrenal tumor like pheochromocytoma.

Axial T1 weighted non-contrast image demonstrating a 4.5x4.3cm predominantly hyperintense cystic lesion in the left adrenal gland. Hyperintensity most consistent with hemorrhage.

a - liver

Post-contrast administration demonstrates an enhancing wall with no central enhancement in the left adrenal lesion (white arrow).

a - liver, b - kidney, c - aorta, d - right adrenal triangle-enhancing rim, consistent with solid portion of left adrenal mass.

Image from PACS, BIDMC
Brief Reminder

Hyperintensity on T1W MRI, differential:
- Lipid
- Blood
- Gadolinium
- Manganese, Magnesium, Copper
- Melanin
- Calcium
- Protein
- Slowly flowing blood
- Paramagnetic Material
Our Patient: Adrenal Mass on Coronal MRI

Our patient’s imaging

Coronal T2 weighted image demonstrating hyperintense cystic lesion (white arrow) relative to adrenal parenchyma. Findings consistent with solid mass with internal hemorrhage, predominantly cystic in appearance.

a-liver, b-kidney, c-spleen

No presence of lipid (fat) on chemical shift MRI
Index Patient Key Points

- **CT non contrast** – 2.4x2.4cm well circumscribed lesion measuring 16HU

- **Ultrasound** - complex, largely cystic, left adrenal lesion measuring 4.9cm

- **MRI with and without contrast** – 4.5x4.3cm hyperintense lesion on T1-weighted imaging (consistent with hemorrhage) and avid enhancement of wall with contrast (solid component). T2-weighted imaging reveals a hyperintense cystic lesion.
Part II: Pheochromocytoma

- Pheochromocytoma is a rare neuro-endocrine tumor arising from the medulla of the adrenal glands or extra-adrenal tissue that secretes catecholamine.

- Group of chromaffin cell neoplasms with different ages of onset, secretory profiles, locations, and potential for malignancy

- Adrenal glands are in the retroperitoneum above the kidneys. Cortex produces cortisol, aldosterone, androgens while medulla produces epinephrine and norepinephrine.
Pheochromocytoma Epidemiology

- Pheochromocytoma found in about 4.2-6.5% of patients screened for a “incidentaloma”
- 0.3% of secondary causes of hypertension
- Females have a slightly higher incidence with mean age of 44 years for sporadic cases and mean age of 25 for those with genetic predisposition.
- Associated with VHL (Von Hippel-Lindau), MEN (multiple endocrine neoplasia), Neurofibromatosis Type 1

Adrenal gland layer image from http://antranik.org/the-endocrine-system/
Pheochromocytoma: Common Presentations

- Headache, palpitations, and sweating most common. 90% specific for presentation of pheochromocytoma.

- Other symptoms include pallor, nausea, flushing, weight loss, hypertension, orthostatic hypotension, and hyperglycemia.

- Most worrisome concern is hypertensive crisis, usually precipitated by certain medications, food, or tumor manipulations.
Pheochromocytoma: Diagnosis

- Initial screening should include either or both measurements of urinary or plasma metanephrines

- Blood Samples should be drawn under stress free conditions in supine conditions

- In US, liquid chromatography with tandem mass spectrometry generally used for determination of plasma and urinary metanephrines

- Plasma fractionated metanephrines have generally higher sensitivity but lower specificity.
Our Patient’s Labs

- On biochemical testing, patient had elevated plasma metanephrines and elevated urinary catecholamines.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma Metanephrine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normetanephrine</td>
<td>4.1 nmol/L</td>
<td><0.90</td>
</tr>
<tr>
<td>Metanephrine</td>
<td>8.5 nmol/L</td>
<td><0.50</td>
</tr>
<tr>
<td>Chromogranin A</td>
<td>180.0 ng/mL</td>
<td>(1.90-15.0 ng/mL)</td>
</tr>
<tr>
<td>Urinary measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metanephrine</td>
<td>77 mcg/24h</td>
<td>90-315</td>
</tr>
<tr>
<td>Normetanephrine</td>
<td>372 mcg/24h</td>
<td>122-676</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>204 mcg/24h</td>
<td>2-24</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>153 mcg/24h</td>
<td>15-100</td>
</tr>
<tr>
<td>Dopamine</td>
<td>188 mcg/24h</td>
<td>52-480</td>
</tr>
</tbody>
</table>
Part III: Menu of Tests for Imaging Adrenal Tumors

- Imaging Features of Different Adrenal Tumors
- ACR Appropriateness Guideline
- CT scan
- Ultrasound
- MRI
- Functional imaging
 - 131I- and 123I-metaiodobenzylguanidine (MIBG)
 - 111In-pentetreotide
 - PET ligands
Imaging Features of Different Adrenal Masses

- **Adrenal adenomas**: Most common adrenal tumor that is well circumscribed with homogenous lesion found on CT measuring 3cm or less. Usually less than 10HU. Strong contrast enhancement and strong contrast washout.

- **Adrenocortical Carcinoma**: Rare, aggressive tumor usually found in children or older adults. They can be large and invasive. On CT, usually unilateral and solid with necrosis and hemorrhage commonly seen. In washout studies, they tend to retain contrast material. On MRI, Usually hypointense on T1 and hyperintense on T2 compared to liver.

- **Adrenal Neuroblastoma**: Similar to pheochromocytomas in appearance, but more likely to be found in children and generally bigger. Calcifications found in 80-90%.

- **Adrenal Metastasis**: Mets usually bilateral involvement and imaging appearance is more typical of primary tumor. Usually show long washout time. FDG PET useful for confirmation.

- **Adrenal Lymphoma**: Usually bilateral, homogenous, and infiltrates adrenal while maintaining their shape. On CT, usually similar attenuation to muscle. On MRI, usually iso or hypointense on T1 and hyperintense on T2.

- **Pheochromocytoma**: We will discuss on following slides.
ACR Appropriateness Guidelines

Variant 1:
No history of malignancy; mass 1-4 cm in diameter. Initial evaluation.

<table>
<thead>
<tr>
<th>Radiologic Procedure</th>
<th>Rating</th>
<th>Comments</th>
<th>RRL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT abdomen without contrast</td>
<td>8</td>
<td>Presumes that a noncontrast CT has not already been performed and that there are no suspicious imaging features. Should be evaluated by radiologist to determine if contrast administration is needed.</td>
<td>3</td>
</tr>
<tr>
<td>CT abdomen without and with contrast</td>
<td>8</td>
<td>Indicated if noncontrast CT is not diagnostic or if there are concerning imaging features of malignancy. Delayed imaging obtained to calculate washout.</td>
<td>5</td>
</tr>
<tr>
<td>MRI abdomen without contrast</td>
<td>8</td>
<td>May be helpful when nonenhanced CT is equivocal or if there is suspicious imaging features. Appropriate for patient with iodinated contrast allergy.</td>
<td>O</td>
</tr>
<tr>
<td>MIBG</td>
<td>2</td>
<td>Only for suspicion of pheochromocytoma.</td>
<td>3</td>
</tr>
<tr>
<td>MRI abdomen without and with contrast</td>
<td>2</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>US adrenal gland</td>
<td>1</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>Biopsy adrenal gland</td>
<td>1</td>
<td></td>
<td>Varies</td>
</tr>
<tr>
<td>CT abdomen with contrast</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>X-ray abdomen</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Iodocholesterol scan</td>
<td>1</td>
<td>This agent may be used to detect functionally active adenomas.</td>
<td>5</td>
</tr>
<tr>
<td>FDG-PET/CT skull base to mid-thigh</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Image From
ACR Appropriateness Guidelines for Incidental Adrenal Mass
ACR Appropriateness Guidelines

<table>
<thead>
<tr>
<th>Clinical Condition:</th>
<th>Incidentally Discovered Adrenal Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variant 3:</td>
<td>No history of malignancy; mass >4 cm in diameter. (If not typical for adenoma, myelolipoma, hemorrhage, or simple cyst, consider resection.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiologic Procedure</th>
<th>Rating</th>
<th>Comments</th>
<th>RRL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT abdomen with contrast</td>
<td>8</td>
<td>As part of preoperative staging. Alternative to MRI.</td>
<td>☺☺☺☺</td>
</tr>
<tr>
<td>MRI abdomen without and with contrast</td>
<td>8</td>
<td>As part of preoperative staging. Alternative to CT. See statement regarding contrast in text under “Anticipated Exceptions.”</td>
<td>O</td>
</tr>
<tr>
<td>FDG-PET/CT skull base to mid-thigh</td>
<td>5</td>
<td>As part of preoperative staging.</td>
<td>☺☺☺☺</td>
</tr>
<tr>
<td>MIBG</td>
<td>2</td>
<td>Only for suspicion of pheochromocytoma.</td>
<td>☺☺☺</td>
</tr>
<tr>
<td>CT abdomen without and with contrast</td>
<td>2</td>
<td></td>
<td>☺☺☺☺</td>
</tr>
<tr>
<td>MRI abdomen without contrast</td>
<td>1</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>US adrenal gland</td>
<td>1</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>CT abdomen without contrast</td>
<td>1</td>
<td></td>
<td>☺☺☺</td>
</tr>
<tr>
<td>X-ray abdomen</td>
<td>1</td>
<td></td>
<td>☺☺</td>
</tr>
<tr>
<td>Iodocholesterol scan</td>
<td>1</td>
<td>This agent may be used to detect functionally active adenomas.</td>
<td>☺☺☺☺</td>
</tr>
<tr>
<td>Biopsy adrenal gland</td>
<td>1</td>
<td></td>
<td>Varies</td>
</tr>
</tbody>
</table>

Image From
ACR Appropriateness Guidelines for Incidental Adrenal Mass
Algorithm for Work Up for Incidentaloma

*Focus on the navy box surrounding the difference benign and suspicious appearance of adrenal masses found on CT. These imaging characteristics often dictate appropriate subsequent biochemistry/surgical work up.

Features of Pheochromocytoma on CT scan

<table>
<thead>
<tr>
<th>Non-Contrast CT: Usually presents as low density soft tissue attenuation. 2/3 are solid with 1/3 cystic or complex. Attenuation values greater than 10 HU almost all the time. Attenuation less than 10 HU more likely to be adenomas. CT scan is usually the gold standard for adrenal mass evaluation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>However, some pheochromocytoma may contain intracellular fat which can result in lower attenuation than expected. Hemorrhage or calcification can also be found.</td>
</tr>
<tr>
<td>Contrast CT: Homogeneous or variable enhancement however most pheochromocytomas show avid enhancement of solid components.</td>
</tr>
<tr>
<td>Contrast washout typically shows washout less than 40% with a 15-minute delay. Increased washout is more likely to be associated with benign adenoma.</td>
</tr>
<tr>
<td>Larger number of pheochromocytomas show a washout pattern more similar to adenoma than adrenocorticocarcinoma.</td>
</tr>
</tbody>
</table>
Companion Patients 1 and 2: Pheochromocytoma on CT

Example Companion 1

Axial noncontrast CT imaging demonstrating a Low attenuation left adrenal pheochromocytoma with a density of 10HU, similar to adenoma (white arrow). **a-kidney, b-aorta, c-pancreas**

Example Companion 2

Axial contrast CT imaging demonstrating a Bilobed right pheochromocytoma consisting of solid enhancing component (straight arrow) and cystic posterior component (curved arrow). **a-liver, b-gallbladder, c-aorta**

Features of Pheochromocytoma on Ultrasound

• In general, pheochromocytomas can mimic many different size and morphologies. Smaller lesions tend to be more homogeneous and larger lesions more heterogeneous.

• On ultrasound, pheochromocytomas often varies ranging from solid to mixed cystic and solid to cystic.

• Ultrasound useful for confirming cystic-necrotic changes within a pheochromocytoma. Cyst can be anechoic or contain debris with posterior acoustic enhancement.
Companion Patient 3: Pheochromocytoma on Ultrasound

Example Companion 3

Sagittal ultrasound image showing 4cm solid right adrenal pheochromocytoma that is iso to hyperechoic to the liver. (white arrow)
Features of Pheochromocytoma on MRI

- On T1-weight imaging, pheochromocytomas are usually isointense to muscle and hypointense to liver.

- If necrosis or hemorrhage present, T1 imaging can be variable.

- Classic imaging feature is a “light-bulb” bright lesion on T2-weight imaging, similar to CSF. This is seen in about 11-65% of pheochromocytomas. 35% of cases pheochromocytomas may have low signal intensity on T2-weighted imaging.

- Typically show avid gadolinium enhancement, but can be variable since cystic-necrotic areas will no enhance

- Of note, adrenal adenomas are generally lipid-rich and can be diagnosed on chemical shift MRI. However, pheochromocytoma containing microscopic fat can mimic this appearance as well.
Companion Patient 4 and 5: Pheochromocytoma on MRI

Example Companion 4

Axial T1-weighted shows low signal intensity left adrenal pheochromocytoma. (white arrow). a – kidney, b- aorta

Example Companion 5

Axial fat suppressed T-2 weighted image showing “light bulb” right tumor (high T2 signal intensity). a – kidney

Features of Pheochromocytoma on Functional Imaging

- 131I- and 123I-metaiodobenzylguanidine (MIBG) most commonly used. MIBG is a norepinephrine analog that localizes to presynaptic adrenergic nerves and sympathomedullary tissue. Uptake of radiotracer is proportional to number of neurosecretory granules within tumor.

- Pheochromocytomas will generally show unilateral focal uptake within tumor. Lower sensitivity than other tests, but high specificity. Useful test if concern for metastasis or unclear CT, MRI results.

- Can often with combined with chemotherapy to target metastasis but has side effect of bone marrow suppression. Treatment may include cyclophosphamide, vincristine, dacarbazine.

Example Companion 6: Axial 123-MIBG fused CT image with radioisotracer uptake in the right adrenal tumor (white arrow)

Imaging Summary

- Pheochromocytomas can have variable appearance on imaging scan. They can have calcification, necrosis, fibrosis, cystic degeneration, intracellular lipid degeneration.

- As a rule of thumb: 10% bilateral, 10% extraadrenal, 10% malignant, 10% hereditary, 10% nonfunctioning. Diagnosis is usually suspected in young patient who presents with paroxysmal palpitations and hypertension.

- CT scan analysis is primarily dependent on attenuation. Most pheochromocytomas will have unenhanced attenuation greater than 10H.

- CT with contrast with result in rapidly and avidly enhancing lesion with greater than 40H.

- MRI: In general, low signal intensity on T1 and high intensity on T2. Usually will enhance intensely on T2, but may mimic adenoma if they contain fat.

- If CT, MRI not decisive, nuclear imaging, usually MIGB, can be used.
Our Patient: Follow Up

- Patient treated preoperatively with alpha and beta blockade. She underwent left open adrenalectomy given patient’s symptoms, substantially elevated catecholamines, and enlarging adrenal mass on imaging studies.

- Pathology consistent with pheochromocytoma with organizing hematoma (9 cm including the hematoma) with foci suspicious but not diagnostic for vascular invasion. No tumor necrosis, capsular invasion, or significant nuclear pleomorphism.

- Patient continued to show down trending urinary and plasma catecholamines on subsequent visits. Patient improved symptomatically as well.
References

- Chew, FS, Banks, KP. Imaging of Pheochromocytoma and Incidental Adrenal Lesions: Self-Assessment Modules. AJR 2006; S467-469
- Blake MA, Cronin, CG, GW, Boland. Adrenal Imaging. AJR 2010; 194(6):1450-60
Acknowledgements

Monica Agarwal, MD
Gillian Lieberman, MD
Claire Odom
Core and Advanced Radiology Clerkship