Tibial Osteomyelitis: Diagnostic MRI Imaging and Pathogenesis

Gordon H. Bae, Harvard Medical School, Year III
Gillian Lieberman, MD
Learning Objectives

• Clinical presentation and physical exam findings of osteomyelitis
• Classical findings in plain film and MRI
• Pathophysiology and common microorganisms of osteomyelitis
Learning Objectives

- Clinical presentation and physical exam findings of osteomyelitis
 - Classical findings in plain film and MRI
 - Pathophysiology and common microorganisms of osteomyelitis
Our patient: History

• 82 F presents to the ED with worsening knee pain
• Fall 2 months ago -> progressing R knee pain -> difficulty ambulating
• Nursing home resident, walks with a walker at baseline
• PMH: dementia, DVT, a fib, HTN, UC s/p ileostomy
• Soc: No smoking or drugs, occasional EtOH
• Temp: 99.4, BP: 112/61, HR: 83, RR: 18, O2%: 96% RA
• PE: Erythema and warmth in right knee, painful to palpation, fluctuance, old cuts around posterior fossa
Our Patient: Lab findings

- WBC: 5.7
- Cr: 0.6
- INR: 2.3
- CRP: 65.5
- ESR: 105
- Cultures pending
Our Patient: Brief Summary

- R knee pain
- Nursing home resident
- T: 99.4
- History of fall + cuts around knee
- Erythema and warmth
- Fluctuance
- Increased ESR, CRP
Our Patient: Differential Diagnosis

• High:
 – Osteomyelitis
 – Septic Arthritis
 – Cellulitis
 – Tumor

• Low
 – Reactive Bone Marrow Edema
 – Trauma
 – DJD
 – Gout
Learning Objectives

✓ Clinical presentation and physical exam findings of osteomyelitis

➢ Classical findings in plain film and MRI

• Pathophysiology of and common microorganisms osteomyelitis
Choice of imaging

• Plain Film Sensitivity: 43-75%, Specificity: 75-83%
• CT Scan Sensitivity: 67%, Specificity: 50%
• MRI Sensitivity: 82-100%, Specificity: 75-96%
• Ultrasound TBD
• Bone Scintigraphy Sensitivity: 60%, Specificity: 80%
Choice of imaging

- Plain Film
- CT Scan
- MRI
- Ultrasound
- Bone Scintigraphy
Normal Anatomy of the Knee

- Femur
- Lateral Epicondyle
- Lateral Femoral Condyle
- Lateral Tibial Condyle
- Head of Fibula
- Medial Epicondyle
- Patella
- Intercondylar Notch
- Medial Femoral Condyle
- Medial Tibial Condyle
- Intercondylar Eminence
- Tibia

Wikiradiography; http://www.wikiradiography.net/page/Knee+(non+trauma)+Radiographic+Anatomy; Date accessed: November 16, 2014
Our Patient: Plain Radiograph

AP

Cross Table Lateral
Our Patient: Radiograph Highlights

Plain Radiograph: AP View

Radiographic Findings:
- Cortical destruction/erosion
- Periosteal reaction
- Soft tissue swelling
- Ill defined area of lucency
Our Patient: Differential Diagnosis

• **High:**
 – Osteomyelitis
 – Septic Arthritis
 – Cellulitis
 – Tumor

• **Low**
 – Reactive Bone Marrow Edema
 – Trauma
 – DJD
 – Gout
Next Step in Imaging

MRI
Interpreting a T2 C- MRI

<table>
<thead>
<tr>
<th>Object</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>Dark</td>
</tr>
<tr>
<td>Edema (fluid)</td>
<td>Light</td>
</tr>
<tr>
<td>Blood</td>
<td>Dark</td>
</tr>
<tr>
<td>Bone (cortex)</td>
<td>Dark</td>
</tr>
<tr>
<td>Bone (marrow)</td>
<td>Light</td>
</tr>
<tr>
<td>Fat</td>
<td>Light</td>
</tr>
</tbody>
</table>
Our Patient: T2 MRI Findings

Radiographic Findings:
- Tissue enhancement
- Cortical destruction
- Normal Cortex

Axial T2 C- MRI
Interpreting a T1 FS C+ MRI

<table>
<thead>
<tr>
<th>Object</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>Dark</td>
</tr>
<tr>
<td>Edema (fluid)</td>
<td>Dark</td>
</tr>
<tr>
<td>Blood</td>
<td>Light</td>
</tr>
<tr>
<td>Bone (cortex)</td>
<td>Dark</td>
</tr>
<tr>
<td>Bone (marrow)</td>
<td>Dark</td>
</tr>
<tr>
<td>Fat</td>
<td>Dark</td>
</tr>
</tbody>
</table>
Our Patient: T1 MRI Findings

Radiographic Findings:
- Non-enhancing fluid with thick rim enhancement
- Tissue enhancement
- Increased signal intensity in bone
- Normal Cortex

Axial T1 FS C- MRI
Interpreting STIR MRI

<table>
<thead>
<tr>
<th>Object</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>Dark</td>
</tr>
<tr>
<td>Edema (fluid)</td>
<td>Light</td>
</tr>
<tr>
<td>Blood</td>
<td>Dark</td>
</tr>
<tr>
<td>Bone (cortex)</td>
<td>Dark</td>
</tr>
<tr>
<td>Bone (marrow)</td>
<td>Dark</td>
</tr>
<tr>
<td>Fat</td>
<td>Dark</td>
</tr>
</tbody>
</table>
Our Patient: STIR MRI Findings

Radiographic Findings:
- Fluid collection
- Periosteal edema
- Edema

Axial STIR MRI
Our Patient: Review of Radiological Findings

• Plain Film
 • Cortical destruction
 • Periosteal reaction
 • Soft tissue swelling
 • Areas of lucency

• MRI
 • Abscess (loculated)
 • Cortical erosion
 • Periosteal edema
 • Bone marrow edema
Our Patient: Next Steps?

- Tissue biopsy
- Bacterial cultures
- Debridement
- Bone biopsy to rule out tumor
Our Patient: CT S/P Debridement

Radiographic Findings:
- Evacuated Bone

Physical Findings in Surgery:
- Pockets of necrotic tissue
- Scalloped areas of proximal tibia
Our Patient: Pathology Results

• Bone:
 • Acute inflammation
 • Granulation tissue
• Blood culture:
 • Negative
• Tissue culture:
 • Pseudomonas aeruginosa
Our Patient: Differential Diagnosis

- **High:**
 - Osteomyelitis
 - Septic Arthritis
 - Cellulitis
 - Tumor

- **Low**
 - Reactive Bone Marrow Edema
 - Trauma
 - DJD
 - Gout
Our Patient: Outcome

- Managed with antibiotics (IV cefepime BID for 6 weeks)
- Recovery: able to ambulate with a walker + improvement in strength
- No recurrence as of 2 months
Learning Objectives

✓ Clinical presentation and physical exam findings of osteomyelitis
✓ Classical findings in plain film and MRI

➢ Pathophysiology and common microorganisms osteomyelitis
Osteomyelitis: Initiation

- **Hematogenous seeding**
 - Children/elderly patients

- **Contiguous spread**
 - **Trauma**, surgery, prosthetics

- **Vascular insufficiency**
 - Diabetics, vascular insufficiency
Osteomyelitis: Pathogenesis

1. Infection
2. Inflammation
 1. Reactive hyperameia -> osteoclastic activity
 2. Destruction of soft tissue -> decreased vascular supply to bone
3. Extension into cortex

Osteomyelitis: Pathogenesis

4. Areas of dead bone (sequestra)
5. New bone formation at periphery
6. Sinus tract formation

Osteomyelitis: Differentiating Acute vs. Chronic

• **Acute**
 – Several days to weeks
 – Acute inflammation

• **Chronic**
 – Weeks to years
 – Low-grade inflammation
 – Presence of dead bone (sequestrum)
 – Sinus tracts
 – Relapses
Osteomyelitis: Common Organisms

<table>
<thead>
<tr>
<th>Organism</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Aureus</td>
<td>Most frequent; adhesins</td>
</tr>
<tr>
<td>S. Epidermis</td>
<td>Foreign bodies</td>
</tr>
<tr>
<td>P. Aeruginosa</td>
<td>Puncture wound</td>
</tr>
<tr>
<td>Anaerobes</td>
<td>Fist to tooth; diabetic ulcer</td>
</tr>
<tr>
<td>Salmonella</td>
<td>Sickle cell disease</td>
</tr>
<tr>
<td>Pasteurella</td>
<td>Bites</td>
</tr>
<tr>
<td>M. Tuberculosis</td>
<td>Endemic area</td>
</tr>
<tr>
<td>Fungal</td>
<td>Immunocompromised</td>
</tr>
</tbody>
</table>
Summary

• Clinical presentation and physical exam findings of osteomyelitis
 – R knee pain
 – Nursing home resident
 – T: 99.4
 – History of fall + cuts around knee
 – Erythema and warmth
 – Fluctuance
 – Increased ESR, CRP

• Classical findings in plain film and MRI
 • Plain Film
 • Cortical destruction
 • Periosteal reaction
 • Soft tissue swelling
 • Areas of lucency
 • MRI
 • Abscess (loculated)
 • Cortical erosion
 • Periosteal edema
 • Bone marrow edema

• Pathophysiology and common microorganisms of osteomyelitis
 – 3 mechanisms of infection
 – Acute vs. chronic
 – Common microorganisms and associations
References

- Wikiradiography; http://www.wikiradiography.net/page/Knee+(non+trauma)+Radiographic+Anatomy; Date accessed: November 16, 2014
Acknowledgements

Dr. Gillian Lieberman
Dr. Justin Kung
Dr. Mark Masciocchi
Mr. Joseph Singer