Patient Presentation: DF

- DF is 21 year-old female brought in to the ED by EMS for a near drowning
- Was on her way to a wedding when she drove off a 30-foot high bridge
- Fell into brackish, fresh water
- Had a 10 minute submersion time
- Upon extraction, was reported to be vomiting and have an agonal breathing pattern
- EMS was unable to establish an airway
DF: Physical Exam

- **Vitals**
 - Temperature **91.2**, rectally
 - BP: 109/35
 - Pulse: 100
 - Respiratory Rate: **4**
 - O_2 Sat: **75% on non-rebreather**

- **HEENT**: notable for some lacerations

- **Chest**: Coarse breath sounds, bilaterally; no flail chest

- **CV**: RRR; pulses 2+ throughout

- **Abd**: NT/ND

- **Neuro**: PERRL, 8 → 7 mm, bil. Moving all extremities

- **Spine**: No tenderness, contusions, or step-offs

- **Skin**: Several lacerations
DF: Radiological Evaluation

- Cross-table C-spine Negative for fractures or dislocations
- Pelvis negative for fractures
- Head CT negative for edema (limited by artifact)
- Portable Chest
Agenda

- ARDS: an introduction
- Normal pulmonary capillary circulation
- Pathophysiology of ARDS
- Radiographic appearance of ARDS
- Differential diagnosis for diffuse alveolar pulmonary infiltrates
- Sequelae of ARDS on radiographs
- Summary
ARDS: an introduction

- ARDS = Acute Respiratory Distress Syndrome
- Consensus criteria (Bernard, et. al., 1994):
 - Acute onset
 - Bilateral Infiltrates on chest radiography
 - Pulmonary artery wedge pressure ≤ 18 mmHg or absence of clinical evidence of left atrial hypertension
 - $\text{PaO}_2/\text{FiO}_2 \leq 200$
 - $\text{PaO}_2/\text{FiO}_2 \leq 300 = \text{Acute Lung Injury}$
- Incidence between 10 and 75 per 100,000
- Mortality approx. 35%, down from 50 – 60% over the last 15 years
Normal Pulmonary Capillary Circulation

- Fluid is maintained out of the alveolus
- Starling hypothesis describes fluid flow across capillary membrane
- \(Q_f = k \left[(P_c + \pi_i) - (P_i + \pi_p) \right] \)
 - \(Q_f \) = Fluid movement
 - \(k \) = Filtration constant for capillary membrane
 - \(P_c \) = Capillary hydrostatic pressure
 - \(P_i \) = Interstitial fluid hydrostatic pressure
 - \(\pi_p \) = Plasma oncotic pressure
 - \(\pi_i \) = Interstitial fluid oncotic pressure
- \(P_c \) and \(\pi_i \) favor fluid movement into interstitium
- \(P_i \) and \(\pi_p \) favor fluid movement into capillary
- \(k \) favors increased fluid movement (direction dependent on other coefficients)

Causes of ARDS

- Direct lung injury
 - Pneumonia
 - Aspiration of gastric contents
 - Pulmonary contusion
 - Fat embolus
 - Near-drowning
 - Inhalational injury
 - Reperfusion pulmonary edema

- Indirect lung injury
 - Sepsis
 - Severe trauma with shock
 - Cardiopulmonary bypass
 - Drug overdose
 - Acute pancreatitis
 - Transfusion of blood products
Patient presentation: AY

- AY is a 42 y/o F with fatigue and cervical lymphadenopathy
- Also complained of abdominal pain, nausea and vomiting with constipation
- Outpatient X-ray normal
Clinical Course: AY

• Approx. 3 mo. later, AY presented to the ED with an acute exacerbation of her abdominal pain with radiation to the back
• In the interval, she developed fever, night sweats and 45 lb. weight loss
• CT/MRI revealed extensive lymphadenopathy thought to be lymphoma
• Underwent an endoscopic biopsy
• Developed acute pancreatitis
• Developed respiratory distress, with resps in the 20’s and O₂ sats in the 80’s on a non-rebreather
AY: Chest X-rays

Baseline PA
Portable AP 6:50 AM
Portable AP 9:23 AM
Pathophysiology of ARDS

- Increased capillary endothelium permeability
- Influx of protein-rich fluid into the interstitium
- Alveolar epithelium damage
 - Hyaline membrane production
 - Protein-rich edema fluid floods alveoli
 - No mechanism for removal of edema
 - Reduced surfactant production

Radiographic appearance of ARDS

- Radiographic latent period
 - Few or subtle radiographic findings
- Rapid deterioration: diffuse alveolar pattern pulmonary infiltrate
- Findings are usually:
 - Bilateral (92%)
 - Gravity dependent (86%)
 - Worse at the bases (68%)
 - Pleural effusions (50%)
 - Bilateral (28%)
 - Unilateral (22%)
- Air bronchograms
- Kerley B lines are uncommon
- On CT:
 - Patchy consolidation (42%)
 - Mixed consolidation/ground glass opacification (33%)
 - Homogenous (25%)
DF: Initial Chest X-ray

- Diffuse patchy bilateral opacities
- Relatively Symmetric
- Involves both central and peripheral lung
- Air bronchograms
DF: Initial CT

MGH AMICAS system
DF: Initial CT

- Dependent areas of dense consolidation
- Air bronchograms
- Patchy areas of “ground glass” opacification
- Areas of relatively normal appearance
Pulmonary vs. Extrapulmonary Causes – Appearance on CT

- Favor pulmonary cause:
 - Clinical history
 - Asymmetric findings
 - Mix of consolidation and ground glass opacities
 - Nondependent opacification
 - Presence of cysts

- Favor extrapulmonary cause:
 - Clinical history
 - Symmetric
 - Mostly ground glass opacities
 - Dependent opacification

DF: Near-drowning
AY: Acute pancreatitis
DDx for Diffuse Alveolar Pulmonary Infiltrates

- **Blood**
 - Pulmonary Contusion
 - Pulmonary hemorrhage
 - Goodpasteur’s syndrome

- **Pus**
 - CMV pneumonia
 - PCP pneumonia
 - Herpes pneumonia
 - Overwhelming bacterial pneumonia

- **Cells**
 - Bronchoalveolar carcinoma

- **Fluid**
 \[Q_f = k \left[(P_c + \pi_i) - (P_i + \pi_p) \right] \]
 - Increased pulmonary capillary pressure \((\uparrow P_c)\)
 - CHF
 - Decreased plasma oncotic pressure \((\downarrow \pi_p)\)
 - Hypoalbuminemia
 - Increased capillary permeability \((\uparrow k)\)
 - ARDS
ARDS vs. CHF

- Favors ARDS:
 - Clinical history
 - Fairly constant over time
 - Present in periphery
 - No cardiomegally
 - No Kerley lines

- Favors CHF:
 - Clinical history
 - Changes from day to day
 - “Bat-winged” pattern
 - Cardiomegally
 - Kerley lines

MGH AMICAS system

BIDMC teaching files
Sequelae of ARDS

- Lines and tubes
- Pneumothorax from barotrauma
- Pneumomediastinum from barotrauma
- Subcutaneous emphysema from barotrauma
- Pleural effusion
- Atelectasis and collapse from malpositioned ET tube
- Nosocomial pneumonia
- Pulmonary fibrosis
Patient Presentation: LC (Lines and tubes)

- LC is a 25 y/o M transferred from an outside hospital
- Developed ARDS from aspiration and oxycontin and ethanol overdose
- Tubes and lines:
 - ET tube
 - NG tube
 - Chest tube
 - Central line
LC: Aberrant Air in the Chest

Subcutaneous emphysema (HD 5)

Pneumothorax (HD 11)
DF: Hospital Course

- Respiratory distress worsened
- Patient placed on ECMO on HD 7
- On ECMO for 17 days
DF: High Resolution CT

Pleural Effusion
(Visible on CT but not on supine AP view)
DF: Persistent Hypoxia

- ECMO disconnected on HD 24
- Extubated on HD 36
- Persistent high oxygen requirements
- Consolidation in left lower lung field with silhouetting of heart
- Also opacity in right lower lung field
- Pneumonia vs. persistent ARDS
- Broncoscopy revealed MRSA pneumonia
- Treated with vancomycin for 21 days
Resolution of ARDS

- Pulmonary function returns to near normal in most survivors
- Some patients have uncomplicated course and rapid resolution
- Fibrosing alveolitis develops in some patients
 - Collagen is laid down in the alveolar space as early as 7 days after the insult
 - There is remodelling and gradual resolution of fibrosis

DF: Conclusion

- DF was discharged on hospital day 52
- Her O_2 saturation at discharge was 100% at room air
- On her presentation at Grand Rounds two months later, she reported some exertional dyspnea but no other long-term symptoms
- Returned to work as an administrative assistant
DF: Follow-up Chest X-ray

- Chest X-ray 6 weeks post discharge
- Alveolar disease largely resolved
- Fibrosis visible throughout especially in upper lung fields
- Emphysematous changes also visible
Summary

- Normal pulmonary fluid balance dictated by the Starling hypothesis
- In ARDS, a pulmonary or extrapulmonary insult results in a breakdown of capillary endothelium and alveolar epithelium
- There is an influx of protein rich edema fluid into the alveolus
- Hypoxia and respiratory distress result
Summary

- Radiographically ARDS typically presents with a bilateral, diffuse, symmetric alveolar pattern with air bronchograms, worse at the bases (initially).
- On CT, patchy consolidation and/or ground glass opacifications is seen; a homogenous appearance is suggestive of an extrapulmonary etiology.
- The DDx is large, and includes blood, pus, cells, and fluid.
- Complications of ARDS visible on chest X-ray include:
 - Pleural effusion
 - Atelectasis and collapse
 - Pneumothorax, pneumomediastinum, and subcutaneous emphysema
 - Pneumonia
 - Pulmonary fibrosis
References

Acknowledgements

- Christopher Taylor, MD
- Phillip Boiselle, MD
- David Sher, HMS III
- Larry Barbaras and Cara Lyn D’amour, our Webmasters
- Gillian Lieberman, MD

- Pamela Lepkowski
Thank you

- HMS Core radiology clerkship, April/May 2002