The Floppy Airway-
A Review of
Tracheobronchomalacia in Adults

Jay Pahade, MS IV
University at Buffalo, School of Medicine
Gillian Lieberman, MD
Harvard School of Medicine
November 2004
Patient Presentation 1

- 52 y/o male with history of DM, GERD, chronic bronchitis, asthma, htn, hypercholesterolemia, psoriasis, dyspnea, recurring pneumonias that began in 1990’s.
- Progression of dyspnea over last few years with nocturnal wheezing and periods of LOC with apnea.
- Sx history of endoscopic gastric plication, cervical neck fusion
- 30 ppy smoking history
- Family History of CVA, CAD
Patient Presentation 1
Continued

Physical exam notable for obesity, audible wheezing and dyspnea invoked with mild activity.

The patients “asthma” was not very responsive to inhaled bronchodilators and steroid treatment. Dynamic CT evaluation was ordered.
No major abnormalities seen

Images via PACS BIDMC
Selected Dynamic (expiratory) CT images

Level of aortic arch

Marked luminal obstruction with anterior bowing of posterior tracheal wall

Level of pulmonary artery bifurcation

Bilateral bronchi luminal narrowing

Normal increased attenuation of lung fields

Images via PACS BIDMC
CT images-End Inspiration (Lt) vs. Expiratory (Rt)

>70% tracheal luminal narrowing on expiration, highly suggestive of tracheomalacia

Narrowed Bronchi B/L

Images via PACS BIDMC
Axial, 2D sagittal/coronal, and 3D virtual bronchoscopy reconstruction

CT images

Images via PACS BIDMC
Course after initial evaluation

- Imaging findings suggestive of tracheobronchomalacia
- Bronchoscopy to confirm diagnosis
- Stenting of distal trachea and proximal left mainstem bronchus
- Improvement of symptoms post-op with decline later. Repeat bronchoscopy displayed stent migration and subsequent removal performed.
- Patient eventually referred for tracheoplasty
Patient Presentation 2

- 48 y/o women with resected left upper lobe for a carcinoid tumor.
 - S/P multiple thoracotomies for bleeding, adhesion lysis and attempted correction of bronchial torsion.
 - Eventual development of dyspnea and SOB on exertion, hemoptysis and frequent pneumonias.
- PMH of GERD and arthritis.
- 30 ppy smoking hx
- Family history of COPD, CAD, lung cancer
- PE only positive for scattered wheezes, L>R
Pt was seen by pulmonology, had attempted stent placement for correction of bronchial torsion without success.

Repeat bronchoscopy revealed intact left upper bronchus stump, with 180 degrees torque of left mainstem bronchus.

Dynamic airway imaging ordered to further assess bronchi and trachea
CT- End inspiration and dynamic (expiratory) axial images

CT images

CT- End inspiration and dynamic (expiratory) axial images

Smaller left lung s/p LUL resection

Crescentic anterior wall bowing suggestive of tracheomalacia, 60% luminal diameter reduction

Diffuse ground glass opacities (hazy opacities without obscuring vessels)

Can you see any other findings?
2D axial, sagittal/coronal, and 3D virtual bronchoscopy reconstruction CT Images

Carina

Luminal narrowing clearly seen on all images

End Inspiration

Expirator

Images via PACS BIDMC
Patient Presentation 3

- 60 y/o male with Hx of steroid and O2 dependant COPD, DM, asthma, htn, GERD, penile cancer, repeated pulmonary infections, known tracheobronchomalacia treated well with stenting but requiring multiple stent replacements and bronchoscopies.

- Questionable diagnosis of Mounier-Kuhn syndrome
 - Syndrome of marked dilatation of the trachea and main bronchi, sometimes with tracheal diverticulosis, bronchiectasis, and recurrent lower respiratory tract infection

- 45 ppy smoking hx
Patient evaluated by thoracic surgery and found to be candidate for tracheoplasty procedure
CT images- End inspiration (Lt.) and expiratory images (Rt.)

Small Bullae

Tracheomegaly (>3cm) consistent with Mounier-Kuhn syndrome

Can you see the findings?

Images via PACS BIDMC
CT images- End inspiration (Lt) and expiratory (Rt) images

Enlarged bronchi with nodular, thickened walls

Can you see the other findings?
Findings help confirm
Mounier-Kuhn syndrome
Gamut’s Differential—Subglottic tracheal narrowing

- Acquired Stenosis—
 - Trauma, hematoma, posttracheostomy fibrosis

- Carcinoma, Enlarged LN’s

- Laryngotraceobronchitis

- Subglottic hemangioma (kids)

- Extrinsic mass—
 - paratracheal cyst, lymphoma, retropharyngeal abscess

- Vascular compression—
 - Rt aortic arch, double arch, aberrant left subclavian, aneurysm

- Tracheomalacia
Overview

Commonly under diagnosed condition in adults (secondary form)
- Higher rates associated in patients with history of intubation, cuffed and uncuffed tracheostomies, COPD/smoking, asthma, frequent respiratory infections, smoking, radiation, hx of TE fistula, chronic compression by extrinsic mass/vessel.
- Primary form associated with congenital wall weakness in infants

Incidence-
- In general population estimated to be around 10%
- Recent data suggests it may be 3rd most common cause of chronic cough

PFT’s
- Flattening of expiratory limb of flow volume curve is highly suggestive but not seen in all patients.
- No accurate correlation shown between FEV1 values.
Increased compliance/collapsibility of posterior membranous tracheal/bronchial wall with cartilaginous degeneration, loss of elastic fibers and fibrofatty replacement.

Wall weakness thought to lead to poor cough, retained secretions, air trapping, and recurrent infections.

Image from http://www.meddean.luc.edu/lumen/MedEd/Histo/frames/h_fram15.html
Tracheobronchomalacia – Imaging

- **Bronchoscopy remains gold standard.**

- Often defined as 50% decrease in airway **cross sectional area** on dynamic expiratory scan.
 - Prior studies have advocated definition to be from >70% cross-sectional reduction, to values of 18% and 28% reduction for the upper and middle trachea respectively (Aquino et al.).
 - Control subjects have shown an average decline of 2-35% in various studies.

- **Dynamic cine fluoroscopic imaging displaying tracheal collapse with induction of cough is likely most sensitive test for diagnosis.**
Tracheobronchomalacia Imaging

Dynamic Multidetector CT (MDCT) imaging

- Along with Electron Beam CT, recognized as non-invasive means of diagnosis.
- Low dose CT images for expiratory views have been shown to be accurate, quicker to acquire and provide decrease radiation to patient.
- Reconstructed 2D and 3D virtual bronchoscopy views (as seen in our patients) often provide a preferred and quicker means to diagnosis. 3D virtual bronchoscopy allows images beyond sites of stenosis not accessible by conventional bronchoscopy and has been proven accurate with fixed lesions.

 - Gilkeson et al. confirmed strong correlation between dynamic CT imaging and bronchoscopic results.
Tracheobronchomalacia - Imaging

MR imaging-
- Has shown preliminary use with dynamic imaging during coughing maneuver. Coughing thought to be better provoking factor than expiration alone.
- Consider with young patients to avoid radiation and patients with contrast contraindications

Other imaging findings-
- Anterior crescentic bowing of posterior wall on expiration
 - Helps distinguish malacia from more common tracheal stenosis.
- Increased prevalence of air trapping-
 - Results in decreased homogeneous attenuation (more radiolucent) then seen with expiration in normal lung.
 - Some define as less than 100 Hounsfield unit increase of lung density on expiratory images (Arakawa et al.)
Tracheobronchomalacia - Treatment

Stenting -
- Used with improvement of symptoms in diverse bronchial pathology, however long term data not available. Some patients experience further irritation of airway and stent migration.
- Long term metallic stent placement should be avoided in malacia due to increased risk of stent fracture from active luminal changes.

Symptomatic - via use of steroids, bronchodilators, and supplemental oxygen
Tracheobronchomalacia - Treatment

Tracheoplasty -

First described in 1954 with use of bone grafts
Currently many use Marlex mesh placed over posterior wall via thoractomy and pleural dissection and sutured in place at cartilaginous membranous junction.
Recreates D shape of trachea and reinforces posterior wall.
Tracheoplasty - Imaging

- Expect increase posterior wall thickness (>3mm).
 - Boiselle et al. (currently in press) examined 5 pts s/p procedure and found an average thickness of posterior wall to be 5.4mm.
 - Best to wait a 1 month post-op for follow-up as edema and soft tissue hemorrhage can occur early after procedure.

- As seen in cases, most patients have return of normal tracheal caliber and shape.
Patient 1 – Dynamic(expiratory) CT images pre and post tracheoplasty

Lung window

Soft tissue window

Can you see the post-op changes?

Return of normal “D” shaped tracheal lumen

Images via PACS BIDMC
Patient 3 -
Dynamic (expiratory) CT images pre and post tracheoplasty

- Reconstitution of normal tracheal “D” configuration with expiration
- Wall thickening
- Continued bilateral air trapping
- Continued proximal bronchomalacia (mesh not placed here)
Take Home Points

- Tracheobronchomalacia is more common than we think, and should be considered in patients with un-resolving respiratory symptoms and risk factors.
- Dynamic MDCT imaging allows expiratory images that demonstrate malacia and subsequent obstructive pathology and may soon become gold standard. MRI shows promise.
- Tracheoplasty is an exciting technique for surgical candidates and offers relief of the obstruction with easily recognized post-op CT changes.
Acknowledgments

Dr. Phillip Boiselle
Pamela Lepkowskki
Dr. Gillian Lieberman
Larry Barbaras
References

Boiselle et al. Dynamic-CT evaluation of the central airways in patients undergoing tracheoplasty for tracheobronchomalacia. AJR In Press

Hasegawa et al. Tracheomalacia incidentally detected on CT pulmonary angiography of patients with suspected pulmonary embolism. AJR 2003; 181:1505-1509

Lazzarini-de-Oliveira et al. A 38-Year-Old Man With Tracheomegaly, Tracheal Diverticulosis, and Bronchiectasis. Chest. 2001; 120:1018-1020

Zhang et al. Frequency and severity of air trapping at dynamic expiratory CT in patients with tracheobronchomalacia. AJR 2004; 182:81-85