Pulmonary Embolism: Radiologic Approaches to Diagnosis

Ori Preis, Harvard Medical School Year III
Gillian Lieberman, MD
Agenda

• Discuss the pathophysiology and clinical features of pulmonary embolism.
• Present multiple imaging modalities helpful in the diagnosis of pulmonary embolism, as illustrated by cases presenting at the BIDMC.
• Highlight the proper context for the use of the different imaging modalities and the significance of both positive and negative findings.
Pulmonary Embolism: Pathogenesis

- Result of dislodged thrombus, most commonly in the venous system of the lower extremities (90%).
- Emboli lodge in pulmonary vessels too narrow to permit through-flow.
- Morbidity due to:
 - Post-occlusion ischemia
 - Cor pulmonale due to increased pulmonary artery pressures

Urgency of Diagnosis

- Annual U.S. incidence of pulmonary embolism is 300,000
- Annual U.S. mortality from the disease is 50,000
- Untreated disease is associated with 30% mortality
- Treatment reduces mortality to 2-8%

Patient S.I: Clinical Presentation

• 54 year old male presenting with 3-4 days of dyspnea.
• Dyspnea is aggravated by exertion.
• On review of system, patient has cough and palpitations. He denies chest pain and hemoptysis.
• He has noted several days of painful swelling in his right lower extremity
• He was seen earlier in the day at the non-invasive vascular laboratory, where ultrasound demonstrated acute right popliteal venous thrombosis and chronic left popliteal venous thrombosis; he was referred to the emergency department.
S.I: Past Medical History

- Status post craniotomy for brain abscess related to a dental procedure. Recovery complicated by fall, leading to immobility for two weeks.
- Previous history of deep venous thrombosis four years prior to presentation.
- Family history significant for thrombotic events, as well as high incidence of cancer.
Physical Exam and EKG

- Vital Signs: Afebrile, normotensive, heart rate of 107, respiratory rate of 18, oxygen saturation of 95%.
- No murmurs, rubs, or gallops on cardiac auscultation
- Lungs clear to auscultation bilaterally
- Dark purple ecchymosis and tenderness of left anterior thigh.
- Palpable clot in right popliteal fossa.
- EKG changes, with tachycardia, T wave inversions
Pulmonary Embolism: Clinical Presentation

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnea 73%</td>
<td>Tachypnea 70%</td>
</tr>
<tr>
<td>Pleuritic chest pain 66%</td>
<td>Rales 51%</td>
</tr>
<tr>
<td>Cough 37%</td>
<td>Tachycardia 30%</td>
</tr>
<tr>
<td>Hemoptysis 13%</td>
<td>S4 24%</td>
</tr>
<tr>
<td></td>
<td>Fever 14%</td>
</tr>
<tr>
<td></td>
<td>Clinical Manifestations of DVT 30%</td>
</tr>
<tr>
<td></td>
<td>EKG changes 70%</td>
</tr>
<tr>
<td></td>
<td>T wave inversions on EKG 49%</td>
</tr>
</tbody>
</table>

Risk Factors for Pulmonary Embolism (PIOPED-1990)

- Immobilization
- Surgery within the last three months
- Stroke
- History of DVT/known hypercoagulable disorder
- Malignancy

S.I: PA Chest X-Ray

- No pulmonary effusion
- Mediastinal contours unchanged from previous CXR
- Pulmonary vasculature unremarkable
- Hiatal hernia
S.I: Lateral CXR

Lateral chest x-ray is unremarkable
Differential for Pulmonary Symptoms and Negative Chest X-Ray

- Upper respiratory infection
- Asthma
- Bronchiectasis
- GERD
- Early carcinoma
- Foreign body
- Broncholithiasis
- Extrinsic compression

- Laryngeal lesions
- Pulmonary embolism
- Psychogenic cough/dyspnea

Pulmonary Embolism and Chest X-Ray

- Most chest x-rays are abnormal, but the abnormalities are also consistent with competing diagnoses on the differential
- In PIOPED:
 - Atelectasis found in 69% with embolism, 58% without embolism
 - Pleural effusion found in 47% with embolism, 39% without.
 - Cardiomegaly is commonly seen in PE, CHF, and COPD exacerbations.
- 12% of patients (45/383) have normal chest x-rays.
- A normal chest x-ray in a hypoxemic patient is highly suggestive of pulmonary embolism.

Pulmonary embolism and the Chest X-ray

• Classic radiographic findings that are highly specific (though very insensitive):
 – Hampton’s hump: wedge shaped triangular opacity with apex pointing to the hilus
 – Westermark’s sign: decreased vascular markings in a localized area
 – Palla’s sign: enlarged right descending pulmonary artery

• The chest x-ray cannot prove or exclude pulmonary embolism conclusively, but it may demonstrate alternative pulmonary processes causing dyspnea

Pulmonary Embolism and the Chest X-Ray

Triangular opacity with apex to hilus (Hampton’s Hump)

CT Angiography

- **Procedure:**
 - Contrast-enhanced spiral CT to evaluate pulmonary vessels
 - Iodinated contrast media is injected intravenously
- **Helical CT** allows for the evaluation of the entire chest in a single breath hold.
- **For main, lobar, and segmental arteries:** sensitivity of 90% (60%-100% range in various studies) and specificity of 90% (80%-100% range).
- **For subsegmental arteries,** sensitivity is reduced (sensitivity range of 53%-100% for all pulmonary emboli).

CTA: Anatomical Considerations

- Interpretation of CTA involves opacification of pulmonary arteries.
- A systematic evaluation of all arteries is necessary.
- Arteries accompany branches of the bronchial tree, and one vessel is associated with each segment of the lung (ten on right, eight on left).

http://sig.biostr.washington.edu/projects/da/
CTA Findings for Pulmonary Embolism

- **Acute Embolism**
 - Centrally located filling defect
 - Vessel occlusion
 - Vessel distension
- **Chronic Embolism**
 - Eccentric filling defect, often contiguous with vessel wall
 - (+/-) calcifications

Right and left main stem bronchi

Main Pulmonary Artery

Right pulmonary artery embolus

Non-obstructive saddle embolus

Embolus extension into left pulmonary artery
Upper lobe branch occluded by embolus

Ascending aorta

Embolus in right upper lobe arterial tree

Trachea

Descending aorta

S.I CTA
S.I: CTA (Coronal Reconstruction)

Emboli in the left main pulmonary artery

Emboli in the descending right pulmonary artery
CTA: Discussion

- Recent data has demonstrated low morbidity (<2.0%) in patients untreated after negative CTA.
- Role of subsegmental emboli in causing morbidity is still undefined.
- Multi-head CT scanners now allow for faster scanning and better demonstration of segmental and subsegmental pulmonary vessels.
- Along with imaging of pulmonary arteries, CT angiography can-in the same exam-perform CT venography of the lower extremities, correlating well with lower extremity ultrasound examination of legs for DVT.
- Currently pending are the results of the PIOPED II study, designed to assess spiral CTA in detecting PE.

Ventilation/Perfusion Scans

- Most frequently used test in diagnosis of pulmonary embolism.
- Studies are interpreted as normal or high/intermediate/low likelihood of embolism.
- Perfusion imaging via Tc 99m-labeled macroaggregated albumin or Tc 99m-labeled human albumin macrospheres.
- Ventilation imaging via Xe 133, Xe 127, Kr 81m, Tc 99m aerosols.

Ventilation-Perfusion: Anatomic Considerations

- High probability scan: Equivalent of two or more large (>75%) segmental mismatched perfusion deficits.
- Intermediate scan: Less than 2 segmental perfusion defects.
- Low probability scan: Non-segmental defect or or defect accompanied by large radiographic abnormality

Normal V/Q scan rules out pulmonary embolism in all presenting patients, regardless of clinical suspicion.

72% of the PIOPED population were not definitively diagnosed or ruled out for pulmonary embolism with lung scan.

Initial recommendation was for indeterminate results to be followed up with pulmonary angiography.

Likelihood of Pulmonary Embolism following V/Q Scan

<table>
<thead>
<tr>
<th></th>
<th>High Clinical Probability</th>
<th>Intermediate Clinical Probability</th>
<th>Low Clinical Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Likelihood Scan</td>
<td>95</td>
<td>85</td>
<td>56</td>
</tr>
<tr>
<td>Intermediate Likelihood Scan</td>
<td>66</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>Low Likelihood Scan</td>
<td>40</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Normal Scan</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Value of the ventilation/perfusion scan in acute pulmonary embolism. Result of the prospective investigation of pulmonary embolism diagnosis (PIOPED). The PIOPED Investigators. JAMA 1990;263:2753
High Likelihood V/Q Scan

Decreased perfusion of right lung

Decreased perfusion of anterior medial basilar segment

Decreased perfusion of lingula

Perfusion

Ventilation

Courtesy: Kevin Donohoe, MD BIDMC
Minimizing the Uncertainty

• Multiple algorithms have been established to confirm or rule out PE in patients whose diagnosis is uncertain based on V/Q scan and clinical presentation, thereby minimizing the need for diagnostic pulmonary angiography.

• D-dimer measurements:
 – Measurements are highly sensitive but very non-specific.
 – One study of 517 patients demonstrated a 98% negative predictive value.

• Noninvasive lower extremity ultrasound
 – Ultrasound has a high sensitivity (89%-100%) and specificity (89%-100%) for DVT
 – Anticoagulation of patients positive for DVT would be therapeutic for an undiagnosed PE

Lower Extremity Non-Invasive Ultrasound: No Evidence of Thrombosis

Common femoral vein

Compressed common femoral vein

BIDMC PACS
Lower Extremity Non-Invasive Study: Deep Venous Thrombosis

Poîlitéal vein

Non-compressing popliteal vein
Lower Extremity Non-Invasive Ultrasound: DVT Criteria

- Primary diagnostic criteria is non-compressible vein
- Secondary criteria:
 - Echogenic thrombus in lumen
 - Venous distension
 - Lack of Doppler signal
 - No response to Valsalva with backwards flow or augmentation with forward flow

Pulmonary Angiography

- Considered the gold standard in diagnosis of pulmonary embolism.
- Iodinated contrast is injected within the pulmonary vasculature after percutaneous catheterization, usually transfemorally.
- Mortality of 0.5% and morbidity of 5%
- Used in unstable patients, who require interventional management of pulmonary embolism:
 - Suction embolectomy
 - Intrapulmonary thrombolytic therapy

SI: Pulmonary Angiogram

Filling defects, consistent with emboli in upper lobe circulation and right descending pulmonary artery

Courtesy Elvira Lang, MD BIDMC
SI: Pulmonary Angiogram

Embolus in left main pulmonary artery

Courtesy Elvira Lang, MD BIDMC
SI: Pulmonary Angiogram

Lung perfusion status post suction embolectomy

Courtesy Elvira Lang, MD BIDMC
Imaging Modalities Under Investigation

Echocardiography:
- Non-sensitive
- May provide information on PE’s effect on right heart and therefore prognosticate
- Findings include right ventricular hypokinesis and septal bulging towards left ventricle
- Currently being examined as a tool for risk assessment and for management with thrombolytics and embolectomy

Magnetic Resonance Angiography:
- Remains experimental, becoming more sensitive with advancing technology
- Like CTA, least sensitive in localizing subsegmental emboli

Conclusions

• Pulmonary embolism diagnosis and treatment significantly improve patient survival.
• Diagnosis incorporates history, exam, and radiologic studies
• Multiple radiologic studies have a place in PE diagnosis, including chest x-rays, CT angiography, lower extremity non-invasive ultrasound studies, ventilation/perfusion scintigraphy, and pulmonary angiogram
References

References

Acknowledgments

• Raja Kyriakos, MD
• Elvira Lang, MD
• Kevin Donohoe, MD
• Larry Barbaras
• Cara Lyn D’amour
• Gillian Lieberman, MD
• Pamela Lepkowski