Diagnostic Radiology and Nuclear Medicine Imaging in Hodgkin’s Disease

Brett Cox, Harvard Medical School, Year III
Gillian Lieberman, MD

March 2001
Agenda

- Introduction to radiological regions of the mediastinum.
- Differential diagnosis of an anterior mediastinal mass.
- Brief review of Hodgkin’s disease.
- Radiological imaging for Hodgkin’s disease.
 - Menu of tests
 - Diagnostic potential and limitations of tests
 - Role in treatment monitoring and follow-up
 - Introduction to gallium scanning
Patient Clinical History

• A previously healthy 26-year-old white male was referred to the BIDMC infectious disease department for evaluation of:
 – Anorexia with weight loss of 173 to 148 pounds over 8 months
 – Occasional headaches
 – Nonproductive cough
 – Prolonged unexplained fevers to 103\(^\circ\)
 – Worsening drenching night sweats

• Entire infectious disease work-up was negative.
Done as part of the FUO work-up and revealed:
- A right mediastinal opacity.
- Obliteration of the retrosternal clear space.
Areas of the Mediastinum

- **Anterior**: Bounded by the clavicles, diaphragm, sternum, and the pericardium and trachea.
- **Middle**: Between the anterior and posterior mediastinum. Includes the heart, great vessels, and pulmonary roots.
- **Posterior**: Bounded by the thoracic inlet, diaphragm, vertebral bodies/paravertebral gutters, and the pericardium.

Regions of the Anterior Mediastinum

- Region I
- Region II
- Region III

Differential Diagnosis: Adult Anterior Mediastinal Mass

- **Region I**
 - Retrosternal goiter
 - Tortuous innominate artery
 - Lymph nodes
 - Thymic tumors
 - Ascending aortic aneurysms

- **Region II**
 - Germ cell neoplasms
 - Thymic tumors
 - Sternal tumors (usually mets)

- **Region III**
 - Pericardiac fat pad
 - Diaphragmatic hump
 - Morgagni hernia
 - Pericardial cysts

Definitive Diagnosis

- A Chamberlain procedure (mediastinotomy) was performed.
- Multiple biopsies of the large anterior mediastinal mass were taken.
- Histology and flow cytometry revealed Hodgkin’s Disease, nodular sclerosing type.
Hodgkin’s Disease

- 7500 new cases per year.
- 20% of all lymphomas.
- Mean age of diagnosis is 32.
- Arises in a single node and spreads characteristically to anatomically contiguous nodes.
Hodgkin’s Disease

- Often associated with distinctive “B symptoms”:
 - Unexplained fevers > 38°C.
 - Drenching night sweats in past month.
 - Weight loss >10% over 6 months.

- Histology: Reed-Sternberg cell admixed with a variable inflammatory infiltrate.

Imaging in Hodgkin’s Disease

- Staging is of utmost clinical importance because therapy, prognosis, and clinical course are all intimately related to the distribution of disease.

- Diagnostic radiology and nuclear medicine play a pivotal role in:
 - Initial staging.
 - Intra-treatment surveillance.
 - Post-treatment surveillance.
Hodgkin’s Disease Staging

Ann Arbor Classification

Radiographic work-up in initial staging

• Mandatory radiological work-up includes:
 – Chest PA/lateral
 – CT of thorax
 – CT of abdomen and pelvis (replaces Bipedal lymphangiogram)
CT Scan

- Done with IV contrast, early phase imaging, 1 cm slices.
- Detects intrathoracic disease not detected on CXR in 20% of patients.
- Between 10-60% of patients have management change post-CT.
- Sensitivity of abdominal node detection equal to bipedal lymphangiography and is noninvasive and gives added information.
Characteristics

CT findings:

General rule: nodes >1 cm are concerning.
- Often see Asymmetric, anterior mediastinal soft tissue mass.
- Pleural effusions in 30% of cases (lymphatic/venous obstruction).
- Benign pericardial effusions common.
Out Patient: Chest CT

- Large, well circumscribed anterior mediastinal mass.
Out Patient: Chest CT

- Small pericardial effusion.
- Small right pleural effusion.
Radiographic work-up in initial staging – optional tests

- Liver and spleen ultrasonography
 - If clinical suspicion for involvement.
 - Specificity & sensitivity similar to CT or MRI.

- Technetium bone scanning
 - If bony pain, questionable lesions on other studies.

- MRI
 - If suspected occult liver, spleen, thymus, bone marrow lesions.
 - Specificity & sensitivity similar to CT for liver or spleen involvement.

- Gallium scanning
 - Useful in differentiating scarring from active mediastinal lymphoma.
Gallium radionuclide tumor imaging

• **Main indication:**
 – Staging of lymphomas, assessment of their response to therapy, and relapse detection.

• **Technique:**
 – 67Ga-citrate administered I.V.
 – Acquire delayed images.
 – SPECT = rotation of a photon detector array around the body to acquire data from multiple angles.
 – Determines position and concentration of radionuclide distribution.

• **Imaging Mechanism**
 – Rough surrogate marker for tumor metabolic activity.
 – Increased permeability of tumor vessels
 – Large extracellular fluid space
 – Tumor up-regulation of iron-binding proteins such as ferritin
Gallium radionuclide tumor imaging

- **Contraindications:**
 - None.

- **Radiopharmaceutical:** \(^{67}\text{Ga}-\text{Gallium citrate}
 - 8-10 mCi, \(\gamma\)-emitter.
 - Half-life = 78 hours.
 - Binds to transferrin (in plasma), lactoferrin (in tissue), and ferritin.

- **Equipment:**
 - Gamma camera w/ whole body and tomographic abilities, medium or high energy collimator, imaging computer.

- **Patient Preparation:**
 - Bowel regimen may be given after injection to clear activity.
Gallium radionuclide tumor imaging

• Images:
 – Acquired at 48 and 72 hours.
 – Sensitivity for detecting HD is about 85%, specificity of 90%.
 – Sensitivity for mediastinal disease is 95%, specificity of 90%.

• Aftercare:
 – None.

• Complications:
 – None.

• Cost:
 – The cost of SPECT imaging is around $700.
Gallium radionuclide tumor imaging

- Normal gallium activity:
 - Renal cortex: First 24 hours.
 - Liver: Greatest uptake of gallium.
 - Spleen.
 - Bone marrow & blood pool: behavior as an iron analog.
 - Skeleton: Incorporated into the Ca-hydroxyapatite crystal as a Ca$^{2+}$ analog.
 - Children: physeal and thymic activity.
 - Glands: Nasopharynx, salivary & lacrimal.
 - Bowel: 1st colonic activity on delayed images.
 - Breasts & breast milk.
 - External genitalia.
Our Patient: SPECT Imaging

- Large area of intense tracer accumulation in anterior mediastinum.
- Consistent with history of mediastinal lymphoma.
Patient Treatment

- Chemotherapy: 5 cycles of ABVD
- Radiation therapy: Modified mantle
Radiographic intra-treatment surveillance

- Repeat studies with detectable lesions at presentation.
- Determines therapeutic response, therapy modification.
- Follow:
 - Tumor volume decrease.
 - New lesions.
 - Therapy-induced lesions.
Our Patient: Chest P A and Lateral

- Large right mediastinal mass has resolved.
Frontal CXR Comparison

Pre-treatment

Intra-treatment
Lateral CXR Comparison

Pre-treatment

Intra-treatment
Our Patient: Chest CT

- Homogeneous soft tissue mass in the anterior mediastinum
- 3.6 x 2.4 cm
Chest CT Comparison

Pre-treatment

Intra-treatment
Radiographic intra-treatment surveillance

- Residual fibrotic mass often visible on CXR and CT.
- Further investigations determine nature of residual abnormality.
- Gallium imaging after 3 cycles of chemotherapy is an excellent prognostic indicator of clinical outcome.
- A complete response is achieved in 70% of patients.
 - Longer disease free survival.
 - Lower mortality.
Our Patient: SPECT Imaging

- No abnormally gallium-avid region in the anterior mediastinum.
SPECT Comparison

Pre-treatment

Intra-treatment
Radiographic post-treatment surveillance

- Repeat investigations that were abnormal at presentation.
- 25% of relapses occur at new sites.
- Regression of disease may be slow.
- Residual fibrotic mass may still be visible on chest radiograph and CT.
- Further investigations may be necessary to define nature of residual abnormality, can also follow over time.
References

The End!
Acknowledgements

- Beverlee Turner for her support and PowerPoint expertise
- Larry Barbaras and Ben Crandall our Web Masters