Anterior Mediastinal Masses: The 4 T’s

Rachel Van Sambeek, Harvard Medical School, Year III
Gillian Lieberman, MD
Mediastinal Compartments

3 arbitrary divisions that do not correlate with anatomic planes:

Anterior
- sternum to line anterior to heart and great vessels
- thymus, fat, lymph nodes

Middle
- heart, pericardium, ascending and transverse aorta, brachiocephalic vessels, SVC, IVC, main PAs and PVs, trachea, bronchi, lymph nodes

Posterior
- from posterior border of heart and trachea to anterior surface of thoracic spine and ribs
- descending aorta, esophagus, azygous vein, autonomic ganglia and nerves, thoracic duct, lymph nodes, fat

Evaluation of mediastinal mass by location

Chest Radiograph

↓

Mediastinal Mass

↓

Dynamic CT Scan

Differential Diagnosis (based on mediastinal compartment)

<table>
<thead>
<tr>
<th>Superior</th>
<th>Anterior</th>
<th>Middle</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymoma</td>
<td>Teratoma</td>
<td>Pericardial cyst</td>
<td>Neurogenic tumor</td>
</tr>
<tr>
<td>Thyroid (Substernal)</td>
<td>Lymphoma</td>
<td>Bronchogenic cyst</td>
<td>Esophageal disease</td>
</tr>
</tbody>
</table>

Thyroid

1. Thoracic Inlet
2. Smooth, frequently symmetric

Lymphoma

1. Anterosuperior
2. Smooth, Homogeneous
3. Frequently surrounds great vessels

Teratoma

1. Lower superior or anterior compartment
2. May contain calcium

Pericardial Cyst

1. Usually right-sided

Bronchogenic Cyst

1. Frequently subcarinal

Enteric Cyst

1. Differential diagnosis with bronchogenic cyst; need pathology

Differential Diagnosis of Anterior Mediastinal Masses

1. Thymus
 a. Thymoma
 b. Thymic Cyst
 c. Thymic Hyperplasia
 d. Thymolipoma
 e. Thymic Carcinoma
 f. Thymic Carcinoid

2. Teratoma & other germ cell tumors

3. Thyroid (intrathoracic goiter)

4. “Terrible” Lymphoma (can be middle or posterior mediastinal)

These are often difficult to differentiate radiographically!

(the presence of fat or fluid or the use of nuclear scanning can help in some situations)
Ability to discriminate different pathologies based on radiography

- Two independent radiologists were shown CXRs and CTs from 128 patients with anterior mediastinal masses and asked to list their top 3 differential diagnoses and their level of confidence in those diagnoses. Results were compared with histologic dxs.

<table>
<thead>
<tr>
<th></th>
<th>CXR</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 dx correct</td>
<td>36%</td>
<td>48%</td>
</tr>
<tr>
<td>Correct in top 3 dxs</td>
<td>59%</td>
<td>72%</td>
</tr>
<tr>
<td>Highly confident</td>
<td>9%</td>
<td>34%</td>
</tr>
<tr>
<td>Correct when high confidence</td>
<td>58%</td>
<td>80%</td>
</tr>
</tbody>
</table>

- CT interpretation most often correct for benign germ cell tumors, thymolipoma, and omental hernias.

Normal Mediastinal Anatomy at T4 level

• Note: Thymic expansion rarely causes tracheal or esophageal displacement because of its soft density and very anterior position.

Characteristic Thymic Features on CXR

- **Sail sign**
- **Thymic wave**
- **Thymic notch**
- **Loss of Retrosternal Clear Space**

From BIDMC teaching files.
Normal Thymus in a 10-year-old boy

Sail sign

Retrosternal opacity

From BIDMC Teaching files
Thymoma

- Most common anterior mediastinal primary tumor; 20% of adult mediastinal neoplasms
- Presentation between ages 30-50 (most patients are >40 years old)
- 50% are asymptomatic
- Symptoms secondary to compression: chest pain, cough, dyspnea, SVC syndrome (obstructed SVC → head and neck venous congestion, facial edema)
- Parathymic syndromes (approx. 40% of patients)
 - Myasthenia Gravis: seen in 30-50% of thymoma patients; 8-20% of MG patients have a thymoma (although 90% have some sort of thymic abnormality); may develop post thymectomy
 - Pure Red Cell Aplasia: seen in 5% of thymoma patients, but 50% of patients with red cell aplasia have a thymoma
 - Others: hypogammaglobulinemia (10%), endocrine disorders, connective tissue disorders
- Usually arise in the midline and extend unilaterally
- Grading: invasive vs. non-invasive (histologically identical)
- Staging
 - I: within intact capsule
 - II: extension through capsule into surrounding fat, pleura, or pericardium
 - III: intrathoracic metastasis (including pleural seeding)
 - IV: extrathoracic metastasis
Thymoma in a 10-year-old boy

• Grossly widened mediastinum subclavicularly

• Note presence of thymic wave and thymic notch

From BIDMC Teaching files
Thymoma in patient with MG

- Smooth, lobulated mass
- Preservation of aortic knob indicates that mass is not encompassing the aortic arch
- Lateral confirms anterior location

From BIDMC Teaching files
Calcifications in a Thymoma

- Nonspecific finding as thymomas, teratomas, germ cell tumors, and carcinomas can all calcify
- Note also the lobulated contour of the mass

From BIDMC Teaching files
Thymic Cyst: Looking for fluid

3% of anterior mediastinal masses

- Anterior Mass is indeterminate on T1
- Mass is hyperintense on T2
- Mass on CT, with attenuation similar to that of water (10 HU)

Lipoma: Looking for fat

- **Mass** obscuring right heart border, simulating cardiomegaly
- MR shows hyperintense mass (indicating high fat content) and demonstrates close application of mass to cardiac structures

Teratoma (60-70% mediastinal germ cell tumors)

- Germ cell tumors account for 15% adult anterior mediastinal masses; 24% in children
- Well-circumscribed mass in lower anterior mediastinum
- May contain calcifications visible on CXR or CT, even well-formed teeth or bone

From BIDMC teaching files

Thyroid: Intrathoracic Goiter

- 10% mediastinal masses
- Superior mass that extends above the clavicles
- Nuclear scan with radioactive iodine may show expanded area of uptake

From BIDMC Teaching files
The Patient: KL

- **CC**: A 56-year old man with fever, cough, and fatigue for about 1 month, presents 4/21/01 with dizziness and ↑ weakness

- **ER**: Hct of 22.7 (1/02 baseline: 40); CXR notes unusual R heart border contour, but report “doubts any significance” to this finding

- In hospital, hematologic evaluation was obtained given inappropriately low reticulocyte count (3.5%)
The Consult: Hem/Onc Fellow

• Bone marrow biopsy showed only deficiency of erythroid precursors. Viral serologies were negative.
• Suggested thymoma in differential of red cell aplasia in the absence of bone marrow pathology.
• Recommended chest CT evaluation
The Chest X-ray

• Largely unremarkable

• BUT, contour of right heart border is unusual

• Hilar vessels and right bronchus can be seen through mass, implying anterior mediastinal location
The Chest X-ray: Lateral

- Confirms anterior location
- Opacification of retrosternal clear space

From PACS, BIDMC
The Chest CT-Level of the Mitral & Tricupsid Valves

- Note **density** applied to anteriolateral surface of the heart
- **Pericardium** can be identified as dark line outlined by mass and pericardial fat
- **Pericardium** is intact at this level

From PACS, BIDMC
The Chest CT- Higher Level

• At this level, the smooth line of pericardium is disrupted, indicating invasion by the mass near right atrial appendage.

• Findings were confirmed on MRI.
Comparison of Levels on CT

From PACS, BIDMC
The Surgery

• Complete thymectomy was performed two weeks later.
• Involvement of pericardium was noted at surgery, but gross tissue planes were still identifiable.
• Histologically, tumor cells were identified to within 2-3 cell layers from the pericardial specimen margin.
• Pathologic analysis of the surgical specimen was somewhat controversial. There was some disagreement as to the etiology of the tumor: primary thymoma vs. metastatic lymphoma. CT imaging of head, abdomen, and pelvis did not reveal any other tumor sites.
• Pure red cell aplasia supports the diagnosis of thymoma.
References

Acknowledgements

- Dr. James Busch
- Larry Barbaras and CaraLyn D’amour, Webmasters